Промышленный управляемый гигабитный Ethernet коммутатор SWMG-244GSFP(-E)

Руководство пользователя

Содержание

1. Описание устройства	. 3
1.1. Описание SWMG-244GSFP(-E)	
1.2. Характеристики ПО	
1.3. Характеристики устройства	
2. Обзор устройства	. 5
2.1. Передняя панель	
2.2. Задняя панель	
2.3. Крепление для стойки	.7
2.4. Индикаторы на передней панели	
3. Кабели	
3.1. Ethernet кабели	
3.1.1. Назначение контактов 100BASE-TX/10BASE-T	
3.2. SFP	
3.3. Консольный кабель	
4. WEB-управление	. 13
4.1. Настройка через web-браузер	
4.1.1. O web-управлении	
4.1.2. Основные настройки	
4.1.2.1. Информация о системе	
4.1.2.2. Пароль администратора	
4.1.2.3. Настройка IP	
4.1.2.4. HTTPS	
4.1.2.5. SSH	.18
4.1.2.6. LLDP	.18
4.1.2.7. Резервное копирование и восстановление	.22
4.1.2.8. Обновление прошивки	
4.1.3. DHCP сервер	.23
4.1.3.1. DHCP сервер – Установка	.23
4.1.3.2. Список динамических клиентов DHCP	
4.1.3.3. Список устройств DHCP сервера	.24
4.1.4. Конфигурация портов	.24
4.1.4.1. Управление портами	.24
4.1.4.2. Ограничение скорости	
4.1.4.3. Агрегация	
4.1.4.3.1. Настройка агрегации	
4.1.4.3.2. Настройка порта LACP	
4.1.4.3.3. Состояние LACP системы	
4.1.4.3.4. Состояние LACP	
4.1.4.3.5. Статистика LACP	
4.1.4.4. Loop Guard	
4.1.5. Резервирование	
4.1.5.1. Технология Sy-Ring	
4.1.5.2. MSTP	
4.1.6. VLAN	.45

4.1.6.1. Настройка во VLAN	
4.1.6.2. Приватный VLAN	
4.1.7. SNMP	56
4.1.7.1. SNMP - System	56
4.1.7.2. SNMP - сообщества	
4.1.7.3. Пользователи SNMP	59
4.1.7.4. SNMP группы	
4.1.7.5. Таблица просмотра SNMP	
4.1.7.6. SNMP-Accesses	62
4.1.8. Приоритезация трафика	63
4.1.8.1. Настройка портов	
4.1.8.2. Список управления QoS	64
4.1.8.3. Предотвращение штормов	66
4.1.8.4. Wizard	67
4.1.9. IGMP	68
4.1.9.1. IGMP Snooping	
4.1.9.2. Состояние IGMP Snooping	69
4.1.10. Безопасность	
4.1.10.1. ACL	
4.1.10.2. 802.1x	72
4.1.11. Мониторинг и диагностика	
4.1.11.1. Таблица МАС адресов	
4.1.11.2. Зеркалирование	
4.1.11.3. Журнал событий	
4.1.11.4. Подробные сведения	
4.1.11.5. Просмотр статистики трафика	
4.1.11.6. Подробная статистика	
4.1.11.7. Ping-запросы	
4.1.11.8. VeriPHY	
4.1.12. Питание через Ethernet (PoE)	
4.1.12.1. Конфигурация РоЕ – Резервирование питания	
4.1.12.2 Настройка РоЕ – Управление питанием	
4.1.12.3. Настройка РоЕ – Основной и резервный источники питания	
4.1.12.4 Настройка РоЕ – Настройка портов	87
4.1.12.5 Состояние РоЕ	
4.1.12.6 LLDP PoE соседи	
4.1.13. Перезагрузка системы	
4.1.14.Сброс настроек	
5. Командная строка	
5.1. Управление с помощью командной строки	92
6. Технические спецификации	106

1. Описание устройства

1.1. Описание SWMG-244GSFP(-E)

SWMG-244GSFP(-E) - промышленные управляемые Ethernet коммутаторы с функцией кольцевого резервирования с 24 10/100/1000Base-T(X) портами и 4 портами 1000Base-X SFP. Sy-Ring (время восстановления <10 мс при 250 устройствах) и MSTP/RSTP/STP (IEEE 802.1s/w/D) способны защитить информационные системы от временных сбоев. Серия коммутаторов Thunder обеспечивает усовершенствованное управление пропускной способностью на основе ІР, которое может ограничивать максимальную пропускную способность для каждого IP устройства. Пользователь может дать IP камере и NVR большую пропускную способность и ограничить её для других устройств. Коммутаторы этой серии также поддерживают QoS в зависимости от приложений. QoS в зависимости от приложения устанавливает высший приоритет для потока данных в соответствии с номером TCP/UDP порта. Специальная IP защита позволяет иметь доступ к сети только с разрешённых IP и MAC адресов. Хакеры не смогут получить доступ к сети IP видеонаблюдения без разрешений. Это позволит избежать краж хакерами конфиденциальных данных и атак на IP камеры, NVR и контроллеры.

Более того, коммутаторы имеют функцию автоматического предотвращения DoS/DDoS атак. Если IP поток становится слишком большим за короткий период времени, коммутатор заблокирует IP адрес отправителя на какое-то время, чтобы избежать атаки. Это аппаратная защита, поэтому коммутатор позволяет незамедлительно предотвращать DDOS атаки. Коммутаторами можно централизованно управлять с помощью специального ПО, а также через интернет, Telnet и консоль (CLI).

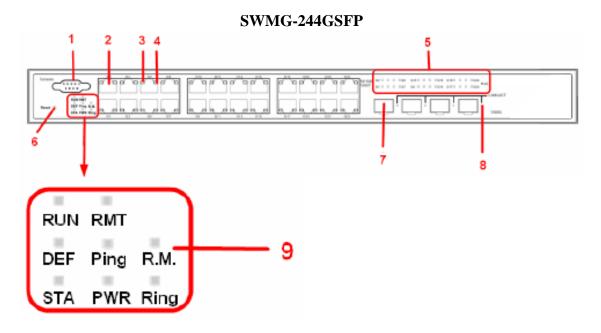
1.2. Характеристики ПО

- Самая быстрая в мире технология кольцевого резервирования в Ethernet сетях (время восстановления <10 мс при 250 устройствах)
- Поддерживает технологию Ring Coupling, технологию Dual Homing параллельно с Sy-Ring
- Поддержка SNMPv1/v2/v3, RMON и управление сетью VLAN на основе портов/802.1Q
- Уведомления о событиях с помощью Email, SNMP trap и реле
- Возможность настройки с помощью Web, Telnet и консоли (CLI)
- Включение/отключение портов, списки доступа на основе МАС
- Контроль доступа к сети по портам (802.1x)
- VLAN (802.1Q) для разделения сетевого трафика и обеспечения безопасности
- Централизованное управление паролями с помощью Radius
- Шифрованная аутентификация SNMPv3 для безопасного доступа
- Quality of Service (802.1p) для трафика в режиме реального времени

- VLAN (802.1Q) с двойным тегированием и поддержкой GVRP
- IGMP Snooping для многоадресной фильтрации
- Настройка портов, состояние, статистика, зеркалирование, безопасность
- Удаленный мониторинг (RMON)

1.3. Характеристики устройства

- Питание 100-240В переменного тока и дополнительно два питания 36-72В постоянного тока для SWMG-244GSFP-E
- Рабочая температура: от -40 до 70 °C
- Температура хранения: -40 до 85 °C
- Допустимая рабочая влажность: от 5% до 95%, без конденсата
- Корпус IP-30
- 24 порта 10/100/1000Base-T(X) RJ45
- 4 порта 1000Base-X SFP
- Консольный порт (коннектор DB-9 «мама»)
- Габариты:
- SWMG-244GSFP: 443,7 мм (ширина) x 200 мм (толщина) x 44 мм (высота)
- SWMG-244GSFP-E: 431 мм (ширина) x 342 мм (толщина) x 44 мм (высота)



2. Обзор устройства

2.1. Передняя панель

В таблице описана маркировка на SWMG-244GSFP(-E)

Порт	Описание
Гигабитные SFP порты	4 порта 1000Base-X SFP
Гигабитный Ethernet порт	4 порта 10/100/1000Base-T(X)
Консоль	Используйте переходник RS-232 – DB9

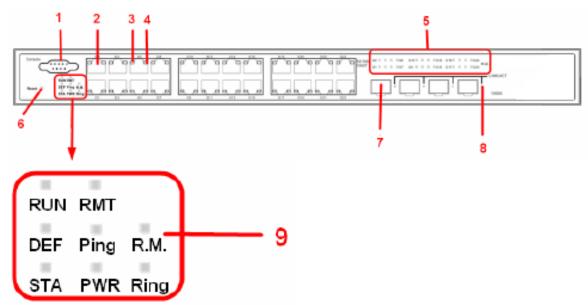
- 1. Консольный порт (коннектор DB9 «мама»)
- 2. Гигабитные 10/100/1000Base-T(X) Ethernet порты
- 3. Оптоволоконные 1000Base-X SFP порты
- 4. Кнопка Reset. Нажимайте на кнопку в течение 3 секунд для перезагрузки; 5 секунд для сброса до заводских настроек.
- 5. Индикатор Link/Act состояния Ethernet портов: Зеленый слева для портов со скоростью 1000 Мбит/с, оранжевый для 10/100 Мбит/с
 - 6. Индикатор состояния Duplex Ethernet портов
 - 7. Индикатор Link/Act состояния SFP портов
 - 8. Индикатор состояния на передней панели:

Индикатор STA. Зеленый: готовность системы. Мигающий зеленый: система обновляет прошивку

Индикатор PWR: При подключении питания загорается зеленая лампочка.

Индикатор R.M. (Ring Master). Когда загорается индикатор, это значит, что коммутатор является главным в кольцевой топологии.

Индикатор кольцевой связи: Когда загорается индикатор, это значит, что технология Sy-Ring активирована.


Индикатор DEF: Сброс настроек системы до заводских

Индикатор Ping: Система обрабатывает Ping-запрос

Индикатор Run: Система работает

Индикатор RMT: Доступ к системе выполнен удаленно

SWMG-244GSFP(-E)

- 1. Консольный порт (коннектор DB9 «мама»)
- 2. Гигабитные 10/100/1000Base-T(X) Ethernet порты
- 3. Оптоволоконные 1000Base-X SFP порты
- 4. Кнопка Reset. Нажимайте на кнопку в течение 3 секунд для перезагрузки; 5 секунд для сброса до заводских настроек.
- 5. Индикатор Link/Act состояния Ethernet портов: Зеленый слева для портов со скоростью $1000~{\rm Mбит/c}$, оранжевый для $10/100~{\rm Mбит/c}$
 - 6. Индикатор состояния Duplex Ethernet портов
 - 7. Индикатор Link/Act состояния SFP портов
 - 8. Индикатор состояния на передней панели:

Индикатор PW1: При подключении PWR1 загорается зеленая лампочка.

Индикатор PW2: При подключении PWR2загорается зеленая лампочка.

Индикатор PW3: При подключении PWR3 загорается зеленая лампочка.

Индикатор STA: Зеленый: готовность системы. Мигающий зеленый: система обновляет прошивку

Индикатор PWR: При подключении питания загорается зеленая лампочка.

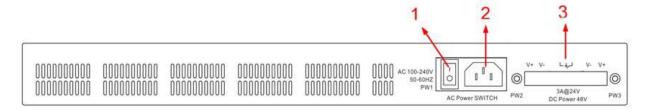
Индикатор R.M. (Ring Master). Когда загорается индикатор, это значит, что коммутатор является главным в кольцевой топологии.

Индикатор кольцевой связи: Когда загорается индикатор, это значит, что технология Sy-Ring активирована.

Индикатор DEF: Сброс настроек системы до заводских

Индикатор Ping: Система обрабатывает Ping-запрос

Индикатор Run: Система работает


Индикатор RMT: Доступ к системе выполнен удаленно

Индикатор сбоя: Загорается при возникновении сбоя

2.2. Задняя панель

Компоненты нижней панели коммутаторов SWMG-244GSFP(-E):

- 1. Силовой переключатель
- 2. Разъем питания для переменного тока 100 В~240В/50-60Гц
- 3. Разъем питания для постоянного тока (только для SWMG-244GSFP-E)

2.3. Крепление для стойки

Комплект для крепления и шурупы находятся в упаковке. Прикрутите комплект для крепления к коммутатору с помощью шурупов, как показано ниже:

2.4. Индикаторы на передней панели

Индикатор	Цвет	Состояние	Описание
PW1	Зеленый	Включен	При подключении PWR1 загорается зеленая лампочка
PW2	Зеленый	Включен	При подключении PWR2 загорается зеленая лампочка
PW3	Зеленый	Включен	При подключении PWR3 загорается зеленая лампочка
STA	Зеленый	Включен	Когда питание в состоянии PWR UP, загорается зеленая лампочка
DEF	Зеленый	Включен	Сброс настроек системы до заводских
RUN	Зеленый	Медленно мигает	Система продолжает работу
PWR	Зеленый	Включен	Питание активно
Ping	Зеленый	Мигает	Система обрабатывает Ping-запрос
RMT	Зеленый	Мигает	Доступ к системе выполнен удаленно
		Включен	Sy-Ring включен
Ring	Зеленый	Медленно мигает	В топологии Sy-Ring только одно соединение (не хватает одного соединения, чтобы построить кольцо)
		Быстро мигает	Sy-Ring работает нормально
R.M.	Зеленый	Включен	Корневое устройство в Sy-Ring
Fault	Оранжевый	Включен	Загорается при возникновении сбоя
Гигабитные 10/1	00/1000Base-T(X) Ethernet порты	
10/100 LINK	Оранжевый	Включен	Порт работает на скорости 10/100.
1000 LINK	Зеленый	Включен	Порт работает на скорости 1000
ACT	Оранжевый	Мигает	Передача данных
EUD	Оранжевый	Включен	Полный дуплекс
r un-Duplex	Full-Duplex справа Мигает		Полу-дуплекс
SFP			
LNK	Зеленый	Включен	Порт подключен

Руководство пользователя SWMG-244GSFP(-E)

АСТ Зелень	й Мигает	Передача данных
------------	----------	-----------------

3. Кабели

3.1. Ethernet кабели

Коммутаторы SWMG-244GSFP(-E) серии имеют стандартные Ethernet порты. Согласно типу соединения, коммутаторы используют UTP кабели CAT 3, 4, 5, 5е для подключения к любым другим сетевым устройствам (ПК, серверы, коммутаторы, роутеры, или концентраторы). Характеристики кабелей представлены в таблице:

Типы и характеристики кабелей

Кабель	Тип	Максимальная длина	Коннектор
10Base-T	Сат. 3, 4, 5 100 Ом	UTP 100 м (328 футов)	RJ-45
100Base-TX	Cat. 5 100 Ом UTP	UTP 100 м (328 футов)	RJ-45
1000Base-TX	Cat.5/Cat.5e 100 Ом UTP	UTP 100 м (328 футов)	RJ-45

3.1.1. Назначение контактов 100BASE-TX/10BASE-T

С кабелями 100Base-TX/10Base-T контакты 1 и 2 используются для передачи данных, и контакты 3 и 6 используются для получения данных.

Назначения контактов 10/100Base-T RJ-45:

Номер контакта	Назначение	
1	TD+	
2	TD-	
3	RD+	
4	Не используется	
5	Не используется	
6	RD-	
7	Не используется	
8	Не используется	

Назначение контактов 1000Base-T(X) RJ45:

Номер контакта	Назначение
1	BI_DA+
2	BI_DA-
3	BI_DB+
4	BI_DC+
5	BI_DC-
6	BI_DB-
7	BI_DD+
8	BI_DD-

Коммутаторы SWMG-244GSFP(-E) поддерживают автоматическую работу MDI/MDI-X. Можно использовать прямой кабель для соединения ПК и коммутатора. В таблице указаны контакты портов MDI и MDI-X 10Base-T/100Base-TX.

Назначение контактов 10/100Base-T(X) MDI/MDI-X

Номер контакта	Порт MDI	Порт MDI-X
1	TD+(передача)	RD+(получение)
2	TD-(передача)	RD-(получение)
3	RD+(получение)	TD+(передача)
4	Не используется	Не используется
5	Не используется	Не используется
6	RD-(получение)	TD-(передача)
7	Не используется	Не используется
8	Не используется	Не используется

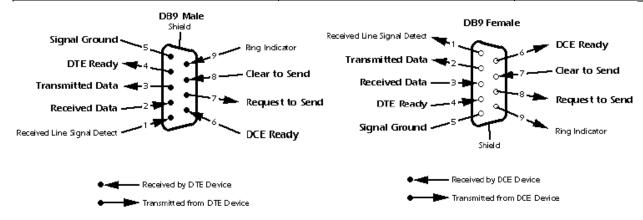
Назначение контактов 1000Base-T(X) MDI/MDI-X

Номер контакта	Порт МОІ	Порт MDI-X
1	BI_DA+	BI_DB+

2	BI_DA-	BI_DB-
3	BI_DB+	BI_DA+
4	BI_DC+	BI_DD+
5	BI_DC-	BI_DD-
6	BI_DB-	BI_DA-
7	BI_DD+	BI_DC+
8	BI_DD-	BI_DC-

Примечание: + и - означают полярность проводов, которые составляют проводную пару.

3.2. SFP


Коммутатор поддерживает оптоволоконные SFP трансиверы: многомодовые (0-550 м, 850 нм в 50/125 мкм, 62,5/125 мкм) и одномодовые с LC коннектором. Помните, что ТХ порт коммутатора А должен быть соединен с RX портом коммутатора Б.

3.3. Консольный кабель

Коммутатороми SWMG-244GSFP(-E) можно управлять с помощью консольного порта. Кабель DB9 — RJ45 можно найти в упаковке. Их можно подключить к компьютеру через RS-232 кабель с коннектором DB9 «мама», и другой конец (коннектор RJ45) подключается к консольному порту коммутатора.

Назначение схемы контактов компьютера «папа»	RS-232 с коннектором DB9 «мама»	DB9-RJ45
Контакт (Pin) #2 RD	Контакт (Pin) #2 TD	Контакт (Pin) #2
Контакт (Pin) #3 TD	Контакт (Pin) #3 RD	Контакт (Ріп) #3
Контакт (Pin) #5 GD	Контакт (Pin) #5 GD	Контакт (Pin) #5

4. WEВ-управление

Внимание!!! Прежде чем производить любые настройки или обновления программного обеспечения устройства, отключите кабели кольцевого резервирования. НЕ выключайте оборудование во время обновления прошивки!

4.1. Настройка через web-браузер

Этот раздел описывает настройку через Веб-браузер.

4.1.1. О web-управлении

Встроенный веб-сайт HTML находится во флеш-памяти на плате центрального процессора. Он содержит расширенные функции управления и позволяет управлять коммутатором из любой точки сети через стандартный веб-браузер, такой как Microsoft Internet Explorer.

Функция web-управления поддерживает Internet Explorer 5.0 и выше. Она основана на Java-апплетах с целью уменьшить размер передаваемых данных, увеличить скорость доступа и предоставить простой интерфейс.

Примечание: По умолчанию, IE 5.0 или выше не позволяет Java-апплетам открывать сокеты. Необходимо самостоятельно разрешить сокеты для Java-апплетов в настройках браузера

Настройка web-управления.

Значения по умолчанию:

IP адрес: 192.168.10.1

Subnet Mask: 255.255.255.0

Default Gateway: 192.168.10.254


User Name: admin

Password: admin

Авторизация

1. Запустите Internet Explorer.

2. Наберите http:// и IP адрес коммутатора. Нажмите Enter

- 3. Появится окно входа
- 4. Введите имя пользователя и пароль. Имя пользователя и пароль по умолчанию admin.
 - 5. Нажмите Enter или кнопку OK, затем появится главный интерфейс веб-управления

Рис. Основной интерфейс

4.1.2. Основные настройки

4.1.2.1. Информация о системе

Информация о системе показывает основные настройки коммутатора

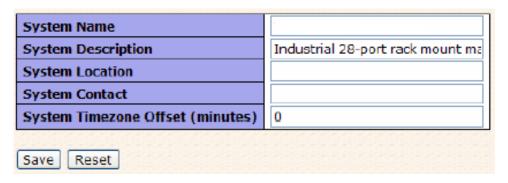


Рис. Информация о системе

Таблица описывает основные поля:

Поле	Описание	
System Name	Имя, назначенное устройству. Условно оно является полным именем узла. Доменное имя - это текстовая строка из букв алфавита (A-Z, a-z), цифр (0-9), знака минус (-). Пробелы в имени запрещены. Первым символом должен быть буквенный символ, минус не может быть первым или последним символом. Длина строки – от 0 до 255.	
System Description		
System Location	Физическое местоположение узла (например, телефонный щит, 3 этаж). Длина строки – от 0 до 255, разрешены только ASCII символы с 33 до 126.	
Timezone Offset Установите разницу, на которую смещаются стрелки часов, в соответст с UTC/GMT. Разница устанавливается в минутах по восточному времен Допустимый интервал: от -720 до 720 минут.		
Save	Нажмите, чтобы сохранить настройки	
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки	

4.1.2.2. Пароль администратора

На этой странице вы можете установить системный пароль для доступа к вебстраницам или CLI.

System Pas	sword
Old Password	
New Password	
Confirm New Password	
Save	

Рис. Интерфейс администратора пароль

Поле	Описание	
Old Password	Введите текущий пароль для доступа к системе. В случае неправильного ввода пароля новый установлен не будет.	
New Password	Пароль для доступа к системе. Длина строки – от 0 до 31, разрешены только ASCII символы с 32 до 126.	
Confirm Password	Повторите новый пароль	
Save	Нажмите Save, чтобы сохранить настройки	

4.1.2.3. Настройка ІР

Вы можете изменить настройки IP и функции DHCP клиента через меню IP Configuration.

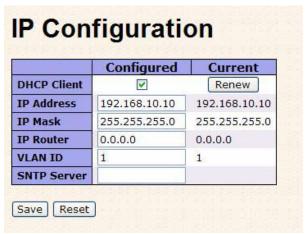


Рис. Интерфейс ІР настроек

Поле	Описание
DHCP Client	Поставьте галочку, чтобы включить функцию DHCP клиента. При сбое DHCP и если значение IP адреса не установлено, DHCP повторит попытку. При сбое DHCP и если значение IP адреса установлено, DHCP остановится и применит текущие настройки IP адреса. DHCP клиент определит установленное системное имя как имя хоста, обеспечивая поиск по DNS.
IP Address	Назначьте IP адрес, принадлежащий к подсети. Если функция DHCP клиента включена, вам не нужно назначать IP адрес. DHCP сервер сети назначит коммутатору IP адрес и он появится в этой графе. IP адрес по умолчанию 192.168.10.1
IP Mask	Назначьте маску подсети для IP адреса. Если функция DHCP клиента включена, назначать маску подсети не нужно.
IP Router	Назначьте сетевой шлюз для коммутатора. Сетевой шлюз по умолчанию: 192.168.10.254
VLAN ID	Укажите VLAN идентификатор сети, из которой можно будет управлять устройством. Интервал от 1 до 4095.
SNTP Server	SNTP – акроним Simple Network Time Protocol, сетевой протокол синхронизации времени по компьютерной сети. SNTP использует UDP
Save	Нажмите, чтобы сохранить настройки
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки
Renew	Нажмите, чтобы обновить DHCP. Эта кнопка доступна только при включенном DHCP.

4.1.2.4. HTTPS

Рис. HTTPS

В таблице описаны поля из скриншота:

Поле	Описание
Mode	Определяет режим работы HTTPS. Режимы: Enabled: Включить режим работы HTTPS (режим работы с HTTPS?) Disabled: Отключить режим работы HTTPS
Automatic Redirect	Определяет режим переадресации на HTTPS. При включенном режиме в веб-браузере автоматически выполнится переадресация на HTTPS. Режимы: Enabled: Включить режим переадресации на HTTPS Disabled: Отключить режим переадресации на HTTPS
Save	Нажмите, чтобы сохранить настройки
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки

4.1.2.5. SSH

Рис. SSH

В таблице описаны основные поля:

Поле	Описание
Mode	Определяет режим работы SSH. Режимы: Enabled: Включить режим работы SSH Disabled: Отключить режим работы SSH
Save	Нажмите, чтобы сохранить настройки
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки

4.1.2.6. LLDP

Параметры LLDP

x Inter	rval 30	seconds					
Tx Hold	3	times					
Tx Dela	y 2	seconds					
Tx Rein	it 2	seconds					
			4	C	optional TLV	S	
Port	Mode	CDP aware	Port Descr		ptional TLV Sys Descr		Mgmt Addr
Port 1	Mode Enabled		Port Descr				Mgmt Addr
-		· •	- L	Sys Name	Sys Descr	Sys Capa	(th. 70)
1	Enabled	· ·	V	Sys Name	Sys Descr	Sys Capa	✓
1 2	Enabled 1		V	Sys Name	Sys Descr	Sys Capa	▽
2	Enabled : Enabled : Enabled :		V	Sys Name	Sys Descr	Sys Capa	> >

Рис. LLDP параметры

Поле	Описание	
Tx Interval	Коммутатор периодически передает LLDP фреймы соседним коммутаторам, чтобы получить последнюю информацию о сети. Интервал между каждым LLDP фреймом определяется значением Tx Interval. Допустимое значение – от 5 до 32768 секунд.	
Port	Port Номер LLDP порта коммутатора	
Mode	Включить или отключить LLDP	

LLDP информация о соседних устройствах

Обзор состояния всех соседних LLDP устройств. Отображенная таблица содержит строку для каждого порта, на котором обнаружено соседнее LLDP устройство. Столбцы содержат следующую информацию:

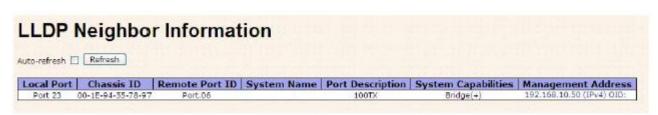


Рис. LLDP информация о соседних устройствах

В таблице описаны основные поля:

Поле	Описание	
Local Port	Порт, через который получен LLDP фрейм	
Chassis ID	Chassis ID для идентификации LLDP фреймов соседних устройств	
Remote Port ID	Remote Port ID для идентификации портов соседних устройств	
System Name	System name – имя соседнего устройства	
Port Description	Port Description – описание порта соседнего устройства	
System capabilities	System capabilities описывают возможности соседних устройств: 1. Другие 2. Повторитель 3.Мост 4. Точка доступа WLAN 5. Роутер 6. Телефон 7. Кабельное устройство DOCSIS 8. Станция 9. Зарезервировано При наличии функции, она сопровождается знаком (+). При отсутствии функции, она сопровождается знаком (-).	
Management Address	Адрес соседнего устройства, которое используется для протоколов верхних уровней в целях сетевого обнаружения. Например, это поле может содержать IP адрес.	
Refresh	Нажмите, чтобы обновить страницу	
Auto-refresh	Поставьте галочку, чтобы включить автоматическое обновление страницы.	

Статистика LLDP

Обзор всего LLDP трафика.

Показаны два типа счетчиков. Глобальные счетчики ссылаются на всю группу коммутаторов, тогда как локальные счетчики ссылаются на данный коммутатор.

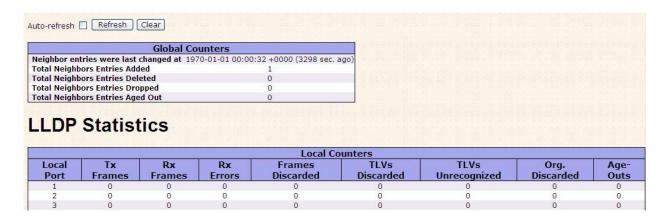


Рис. Статистика LLDP

Global counters

Поле	Описание
Neighbor entries were last changed at	Показывает время, когда последний раз была удалена или добавлена запись, а также прошедшее с последних изменений время.
Total Neighbors Entries Added	Показывает количество новых записей, добавленных после перезагрузки коммутатора
Total Neighbors Entries Deleted	Показывает количество новых записей, удаленных после перезагрузки коммутатора
Total Neighbors Entries Dropped	Показывает количество LLDP фреймов, отброшенных из-за переполнения таблицы.
Total Neighbors Entries Aged Out	Показывает количество записей, удаленных по истечении срока Timeto-Live.

Local counters

Поле	Описание	
Local Port	Порт, с которого отправлены или получены LLDP фреймы	
Tx Frames	Количество LLDP фреймов, отправленных через порт	
Rx Frames	Количество LLDP фреймов, полученных портом	
Rx Errors	Количество полученных LLDP портов, содержащих ошибки	
Frames Discarded	Если LLDP фрейм получен портом, а внутренняя таблица	

	коммутатора переполнена, LLDP фрейм считается и отбрасывается. Эта ситуация известна в стандарте LLDP как "Too Many Neighbors" (слишком много соседей). При отсутствии Chassis ID или Remote ID в таблице LLDP, требуется новая запись в таблице. Записи удаляются из таблицы при истечении срока действия записей, при получении LLDP shutdown фрейма или при выключении порта.
TLVs Discarded	Каждый LLDP фрейм содержит несколько записей, известных как TLVs (TLV – сокращенно от Type Length Value). Искаженный TLV засчитывается и удаляется.
TLVs Unrecognized	Количество цельных TLV, значение и тип которых не известен
Org. Discarded	Количество отброшенных TLV подряд
Age-Outs	Каждый LLDP фрейм содержит информацию о времени, в течение которого LLDP информация достоверна (age-out time). Если в течение age-out time не было получено новых LLDP фреймов, LLDP информация будет удалена, а показатель Age-Out увеличится.
Refresh	Нажмите, чтобы обновить страницу
Clear	Очистить локальные показатели. Все показатели (включая глобальные), будут удалены после перезагрузки.
Auto-refresh	Поставьте галочку, чтобы включить автоматическое обновление страницы.

4.1.2.7. Резервное копирование и восстановление

Вы можете сохранить или просмотреть настройки коммутатора. Файл конфигурации содержится в формате XML с иерархией тегов

Configuration Save

Save configuration

Рис. Резервное копирование и восстановление

4.1.2.8. Обновление прошивки

На этой странице можно обновлять прошивку

Рис. Интерфейс обновления прошивки

4.1.3. DHCP сервер

4.1.3.1. DHCP сервер – Установка

Коммутатор может быть DHCP сервером.

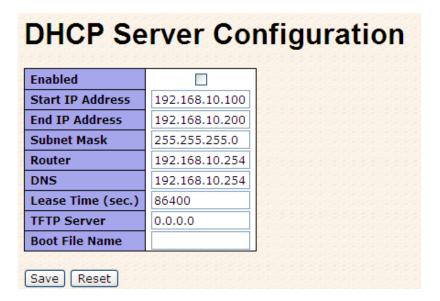


Рис. DHCP сервер – Установка

4.1.3.2. Список динамических клиентов DHCP

При включении функции DHCP, устройство будет собирать информацию с DHCP клиентов и выведет ее в этом окне.



Рис. Список динамических клиентов DHCP

4.1.3.3. Список устройств DHCP сервера

Вы можете назначить определённый IP адрес, который входит в интервал назначенного динамического IP. Устройство, подключившись к порту, запрашивает динамический IP; система назначает IP адрес, назначенный ранее подключенному устройству.

Рис. DHCP сервер – Закрепление IP адресов за портами

4.1.4. Конфигурация портов

4.1.4.1. Управление портами

Текущая конфигурация портов, которые можно здесь же настраивать.

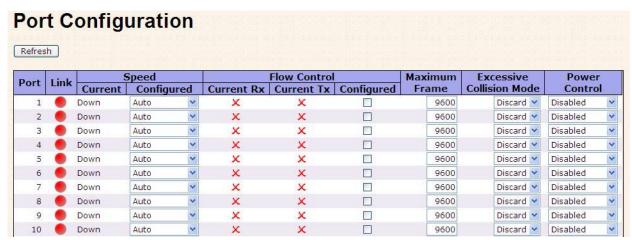


Рис. Управление портами

Поле	Описание
Port	Номер порта
Link	Текущий статус соединения отображается графически. Зеленый – подключено, красный – отключено.
Current Link Speed	Текущая скорость порта
Configured Link Speed	Выберите любую доступную скорость для указанного порта коммутатора. Auto Speed определяет самую высокую скорость, совместимую с соседним устройством. Disabled – остановить работу порта
Flow Control	При включении Auto Speed указанный раздел показывает возможности управления потоком, которые отправляется соседнему устройству. При выбранной скорости, она используется как форма управления потоком. Столбец Current Rx показывает, были ли получены остановочные фреймы через порт, а Current Tx - передаются ли остановочные пакеты. Настройки Rx и Tx определяются в результате последнего автоматического согласования.
Maximum Frame	Введите максимальный размер фрейма, допустимый для порта коммутатора, включая FCS. Допустимые значения – от 1518 до 9600 байт
Excessive Collision	Настройка режима коллизии при передаче через порт Discard: удалить фреймы после 16 коллизий (по умолчанию)

Mode	Restart: Перезапустить алгоритм передачи после 16 коллизий
Power Control	Столбец Usage показывает текущий процент потребления питания на каждом порту. Столбец Configured позволяет изменять параметры режима экономии электроэнергии на каждом порту. Disabled: Все механизмы экономии электроэнергии отключены ActiPHY: экономия электроэнергии при выключении порта PerfectReach: экономия электроэнергии при включении порта Enabled: Экономия энергии и при включении и при выключении порта
Total Power Usage	Общее потребление питания платы, выражено в процентах.
Save	Нажмите, чтобы сохранить настройки
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки
Refresh	Нажмите, чтобы обновить страницу. Любые последние изменения сохранены не будут

4.1.4.2. Ограничение скорости

Настройка ограничения скорости портов коммутатора

Rate Limit Configuration

Port	Policer Enabled	Policer Rate	Policer Unit	Shaper Enabled	Shaper Rate	Shaper Unit
1		500	kbps 💌		500	kbps 💌
2		500	kbps 💌		500	kbps 💌
3		500	kbps 💌		500	kbps 💌
4		500	kbps 💌		500	kbps 💌
5		500	kbps 💌		500	kbps 💌
6		500	kbps 💌		500	kbps 💌
7		500	kbps 💌		500	kbps 💌
8		500	kbps 💌		500	kbps 💌
9		500	kbps 💌		500	kbps 💌
10		500	kbps 💌		500	kbps 💌

Рис. Ограничение скорости

Поле	Описание
Port	Номера логических портов
Policer Enabled	Включить или выключить ограничения на порту. Значение по умолчанию Disabled.
Policer Rate	Настройка ограничения скорости на порту. Значение по умолчанию - 500. Это значение находится в пределах 500-1000000, когда значение Policer Unit соответствует kbps, и в пределах 1-1000, когда значение Policer Unit соответствует mbps.
Policer Unit	Указать единицу измерения для ограничения скорости на порту – kbps или mbps. Значение по умолчанию – kbps.
Shaper Enabled	Включить или отключить port shaper. Значение по умолчанию Disabled.
Shaper Rate	Настройка скорости port shaper. Значение по умолчанию - 500. Это значение находится в пределах 500-1000000, когда значение Policer Unit соответствует kbps, и в пределах 1-1000, когда значение Policer Unit соответствует mbps.
Shaper Unit	Указать единицу измерения для скорости port shaper – kbps или mbps. Значение по умолчанию – kbps.
Save	Нажмите, чтобы сохранить настройки
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки.

4.1.4.3. Агрегация

4.1.4.3.1. Настройка агрегации

Настройка режима хэша агрегации и группу агрегации

Рис. Настройка агрегации

В таблице описаны основные поля:

Поле	Описание					
Source MAC Address	МАС адрес отправителя используется для вычисления порта отправления кадра. Поставьте галочку, чтобы использовать МАС адрес отправителя. По умолчанию МАС адрес отправителя – включен.					
Destination MAC Address	МАС адрес получателя для вычисления для вычисления порта отправления кадра. Поставьте галочку, чтобы использовать МАС адрес получателя. По умолчанию МАС адрес получателя – выключен.					
IP Address	IP адрес используется для вычисления порта отправления кадра. Поставьте галочку, чтобы использовать IP адрес. По умолчанию IP адрес – включен.					
TCP/UDP Port Number	Номер TCP/UDP порта используется для вычисления порта отправления кадра. Поставьте галочку, чтобы использовать номер TCP/UDP порта. По умолчанию номер TCP/UDP порта – включен.					

		Port Members																										
Group ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Normal	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	•
1	\circ	0	0	\circ	\circ	\circ	\circ	0	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	0
2	\circ	0	0	\circ	\circ	\circ	\circ	0	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ
3	\circ	\circ	0	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ
4	\circ	0	0	\circ	\circ	\circ	\circ	0	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ
5	\circ	0	0	\circ	\circ	\circ	\circ	0	0	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	0
6	\circ	0	0	\bigcirc	\circ	\circ	\circ	0	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\circ	\circ	\circ
7	\circ	0	0	\circ	\circ	\circ	\circ	0	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	0
8	\circ	\circ	0	\circ	\circ	\circ	\bigcirc	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ
9	\circ	\circ	0	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	0
10	\circ	0	0	\circ	\circ	\circ	\circ	0	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ
11	\circ	0	0	\circ	0	\circ	\circ	0	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	0
12	\circ	0	0	0	0	0	0	0	0	0	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\circ	\circ	0	\circ	\circ	\circ	0	\bigcirc	0	\circ	\circ
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\circ	\circ
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\circ

Поле	Описание
Group ID	Настройки группы, номера которой содержится в соответствующей строке. Идентификатор Normal означает, что агрегации нет. Для каждого порта можно выбрать только одну группу.
Port Members	Перечислены соответствия всех групп и портов. Нажмите на радиокнопку для включения порта в группу агрегации. По умолчанию, ни к одной агрегированной группе не принадлежит ни один порт. Только полнодуплексные порты могут присоединиться к агрегации. Для каждой группы порты должны иметь одинаковую скорость.

4.1.4.3.2. Настройка порта LACP

Пользователь может просматривать и изменять текущие LACP настройки порта.

LAC	CP Port C	Config	uration
Port	LACP Enabled	Key	Role
1		Auto	Active 💌
2		Auto 💌	Active 💌
3		Auto	Active 💌
4		Auto	Active 💌
5		Auto	Active 💌
6		Auto	Active 💌
7		Auto	Active 💌
8		Auto 💌	Active 💌
9		Auto	Active 💌
10		Auto	Active 💌
11		Auto 💌	Active 💌

Рис. Настройка порта LACP

Поле	Описание						
Port	Номер физического порта коммутатора.						
LACP Enabled	Включить или отключить функцию LACP на данном порту.						
Key	Значение Кеу присваивается каждому порту отдельно, интервал 1-65535. Автоматическая настройка определит ключ, соответствующий скорости физического соединения, 10мбайт = 1, 100мбайт = 2, 1гбайт = 3. Вручную можно ввести любые другие значения. Порты с одинаковым значением ключа могут участвовать в одной агрегированной группе, в то время как порты с разными ключами не могут.						
Role	Role показывает статус LACP. Active: LACP пакеты будут передаваться каждую секунду Passive: LACP пакеты будут ожидаться от соседа						
Save	Нажмите, чтобы сохранить настройки						
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки						

4.1.4.3.3. Состояние LACP системы

Состояние всех LACP.

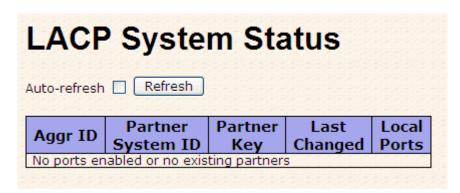


Рис. Состояние LACP системы

Поле	Описание
Aggr ID	Aggregation ID определяет группу агрегации. Для LLAG ID отображен как 'isid:aggr-id", для GLAG - как 'aggr-is"
Partner System ID	Идентификатор (МАС адрес) соседа по агрегации.
Partner Key	Ключ, назначенный этому идентификатору агрегации соседом.
Last Changed	Время, прошедшее после последних изменений агрегации
Last Channged	Показывает, какие порты входят в агрегацию. Формат: "Switch ID:Port".
Refresh	Нажмите, чтобы обновить страницу
Auto-refresh	Поставьте галочку, чтобы включить автоматическое обновление страницы.

4.1.4.3.4. Состояние LACP

Обзор LACP состояния всех портов.

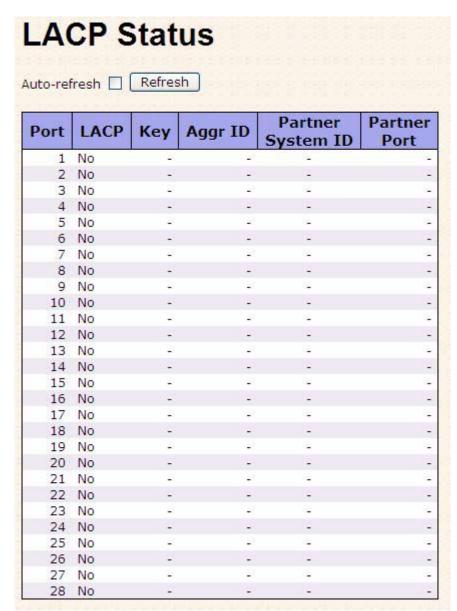


Рис. Состояние LACP

Поле	Описание
Port	Номер порта коммутатора
LACP	Yes означает, что LACP включен и порт подключен. No означает, что LACP выключен или порт отключен. Backup означает, что порт не смог присоединиться к агрегированной группе, но может присоединиться при отключении других портов, LACP на этом порту на данный момент отключен.
Key	Ключ, назначенный этому порту. Только порты с одинаковым значением ключа могут участвовать в одной агрегированной группе.

Aggr ID	Aggregation ID, назначенный этой агрегированной группе.
Partner System ID	Идентификатор соседа (МАС адрес)
Partner Port	Номера портов, подключенных к указанному порту.
Refresh	Нажмите, чтобы обновить страницу
Auto-refresh	Поставьте галочку, чтобы включить автоматическое обновление страницы.

4.1.4.3.5. Статистика LACP

Обзор статистики на всех портах.

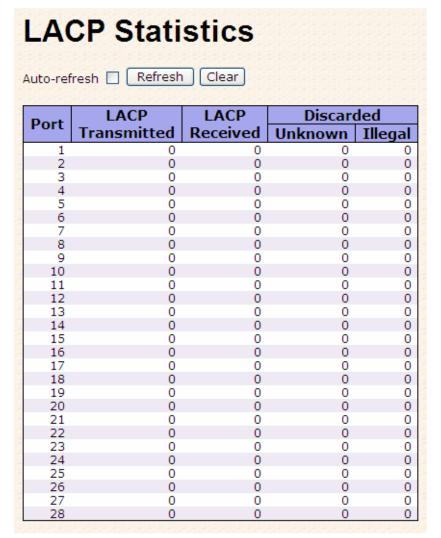


Рис. Статистика LACP

Поле	Описание
Port	Номер порта коммутатора
LACP Transmitted	Показывает, сколько LACP фреймов было отправлено с каждого порта
LACP Received	Показывает, сколько LACP фреймов было получено на каждый порт
Discarded	Показывает, сколько неопознанных или некорректных LACP фреймов было отброшено на каждом порту
Refresh	Нажмите, чтобы обновить страницу
Auto-refresh	Поставьте галочку, чтобы включить автоматическое обновление страницы.
Clear	Обнулить все счетчики для всех портов

4.1.4.4. Loop Guard

Loop Guard – это функция обнаружения и предотвращения петель.

Поле	Описание
Active	Включить функцию Loop Guard
Port State	Guarding: Указанный порт защищен от образования петель Locked: Указанный порт заблокирован для предотвращения петель

4.1.5. Резервирование

4.1.5.1. Технология Sy-Ring

Sy-Ring - одна из самых эффективных кольцевых технологий резервирования в мире. Время восстановления составляет менее 10 мс при 250 устройствах. Она позволяет избежать неожиданных сбоев, вызванных изменениями в сетевой топологии. Технология Sy-Ring поддерживает три Ring-топологии для сетевого резервирования: Sy-Ring, Ring Coupling и Dual Homing.

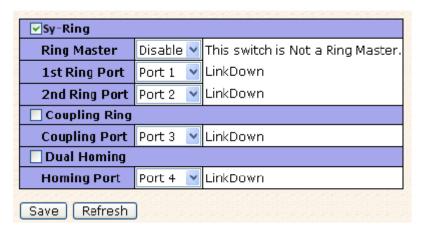


Рис. Sy-Ring интерфейс

Поле	Описание
Sy-Ring	Поставьте галочку, чтобы включить Sy-Ring
Ring Master	В кольце должен быть только один Ring Master. Однако, если коммутаторов, устанавливающих активацию Ring Master, несколько, то коммутатор с минимальным MAC адресом станет корневым устройством, а остальные будут резервными.
1st Ring Port	Основной порт
2nd Ring Port	Резервный порт
Ring Coupling	Поставьте галочку, чтобы включить Ring Coupling. Ring Coupling может использоваться для того, чтобы разделить большое кольцо, для того, чтобы ограничить количество устройств в перестраиваемой подсети. чтобы избежать действия всех коммутаторов во время изменения сетевой топологии. Ring Coupling используется для соединения двух топологий Sy-Ring.
Coupling Port	Соединение с Coupling Port коммутатора в другом кольце. Для Ring Coupling нужно 4 коммутатора, чтобы создать активную и резервную связь. Установите порт как Coupling Port. Две пары портов четырех коммутаторов будут в активном или резервном режиме.
Control Port	Соединение с Control Port коммутатора в том же кольце. Control port обычно используется для передачи контрольных сигналов.
Dual Homing	Отметьте, чтобы включить Dual Homing. При выборе режима Dual Homing Sy-Ring будет подсоединена к обычным коммутаторам через два SY-RSTP канала (например с магистральным коммутатором). Два канала будут

Руководство пользователя SWMG-244GSFP(-E)

	работать в активном и резервном режиме, и соединять каждую Sy-Ring с обычными коммутаторами в режиме Sy-RSTP.
Apply	Нажмите Apply, чтобы активировать настройки

Примечание: Мы не советуем устанавливать один коммутатор одновременно как Ring Master (как основной) и как Ring Coupling из-за высокой нагрузки.

4.1.5.2. MSTP

Настройка узлов

Настройка RSTP. Эти настройки нужны для всех RSTP устройств в сети

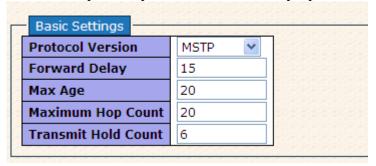


Рис. Настройка узлов

Поле	Описание
Protocol Version	Настройки версии протокола STP. Доступные значения: STP, RSTP, MSTP
Forward Delay	Задержка перед переключением корневых и назначенных портов в состояние продвижения (используется в режиме совместимости с STP). Допустимые значения – от 4 до 30 секунд.
Max Age	Максимальный период жизни информации, переданной с корневого коммутатора. Допустимые значения – от 4 до 30 секунд.
Maximum Hop Count	Определяет первоначальное значение переменной remainingHops для MSTi данных. Определяет, сколько устройств может получить BPDU информацию, генерируемую корневым коммутатором. Допустимые значения — от 4 до 30.
Transmit Hold Count	Количество BPDU, которые порт может посылать каждую секунду. При его превышении передача следующего BPDU будет отложена. Допустимые значения – от 1 до 10 BPDU в секунду.
Save	Нажмите, чтобы сохранить настройки

Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки
-------	--

MSTI mapping

На этой странице пользователь может просматривать и изменять текущие приоритеты STP MSTI.

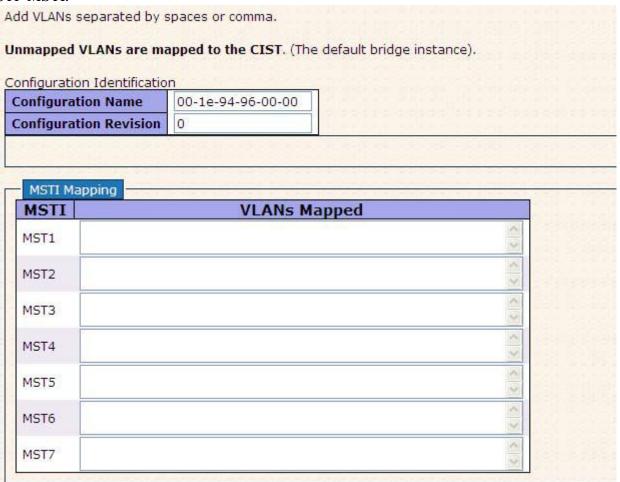


Рис. MSTI mapping

Поле	Описание
Configuration Name	Имя, идентифицирующее VLAN в отображении на MSTI. Узлы должны иметь одни и те же Configuration Name и Revision (смотрите ниже), а также одинаковую конфигурацию VLAN-to-MSTI mapping для того, чтобы построить правильные деревья для MSTi. Имя должно содержать максимум 32 символа.

Configuration Revision	MSTI configuration revision упомянута выше. Значением является число от 0 до 65535.
MSTI	Instance узла. CIST не может быть прямо сопоставлен, так как получит VLAN'ы не явно сопоставленными.
VLANs Mapped	Список VLAN, сопоставленных с MSTI. VLAN'ы должны быть разделены через запятую и/или пробел. VLAN может быть отображен только на одном MSTI. Неиспользованные MSTI следует оставить пустыми (т.е. не отображать VLAN на них).
Save	Нажмите, чтобы сохранить настройки
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки

Приоритеты MSTI

На этой странице пользователь может просматривать и изменять текущие приоритеты STP MSTI

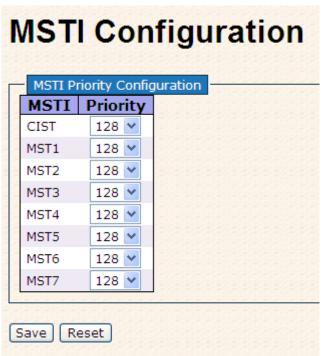


Рис. Приоритеты MSTI

Поле	Описание
MSTI	Instance по умолчанию – CIST, которая всегда активна.

Priority	Приоритетность узлов. Чем ниже значение, тем выше приоритет. Приоритетность узлов и номер MSTI, сложенный с 6-байтовым MAC адресом коммутатора, составляют вместе идентификатор моста.
Save	Нажмите, чтобы сохранить настройки
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки

CIST порты

5

8

9

10

На этой странице пользователь может просматривать и изменять текущие настройки STP CIST портов, а также настраивать физические и агрегированные порты. Настройки агрегации распространяются глобально.

STP CIST Ports Configuration Aggregated Ports Configuration Restricted **STP** Point-to-**BPDU Guard** Port Path Cost **Priority Admin Edge Auto Edge** Enabled Role TCN point 128 🕶 Edge Forced True CIST Normal Ports Configuration Restricted Point-to-**Admin Edge Auto Edge BPDU Guard** Port Path Cost **Priority** Enabled point Role TCN 128 🕶 Edge V Auto Auto 128 🕶 V Auto Edge Auto V 3 Auto 128 🕶 Edge 128 🕶 Edge V ٧ Auto Auto

Рис. CIST порты

٧

٧

V

V

V

V

V

٧

٧

>

Auto

Auto

Auto

Auto

Auto

Auto

В таблице описаны основные поля:

~

v

٧

Auto

Auto

Auto

Auto

Auto

Auto

128 🗸

128 🕶

128 🕶

128 🕶

128 🕶

128 🕶

Edge

Edge

Edge

Edge

Edge

Edge

Поле	Описание
Port	Номер логического STP порта
STP Enabled	Активен ли STP на этом порту коммутатора
Path Cost	Стоимость пути на порту. Настройка Auto определяет стоимость пути в соответствии со скоростью физического соединения, используя значения, рекомендуемые 802.1D. Пользователь также может ввести собственные значения. Стоимость пути используется при установлении активной топологии сети. Порты с низшей стоимостью пути указывается как передающие порты. Допустимые значения — от 1 до 200000000.

Priority	Приоритетность портов. Используется для приоритезации портов, имеющих идентичную стоимость пути. (Смотрите выше)
OperEdge (state flag)	Настройка показывает, что порт подключен напрямую к edge устройствам. (не к сетевому оборудованию). Переход в состояние forwarding для edge ports осуществляется быстрее (при значении openEdge = true), чем для остальных.
AdminEdge	Определяет будет ли openEdge установлен сразу или нет. (Первоначальное состояние openEdge во время инициализации порта)
AutoEdge	Автоматическое определение, является ли порт конечным или нет. Определяет конечное устройство по наличию или отсутствию приходящих BPDU.
Restricted Role	При включении, порт не сможет быть выбран как корневой для CIST или любой MSTI, даже если он имеет лучший приоритет. Этот порт будет указан как альтернативный, после того как будет выбран корневой порт. Это может привести к отсутствию соединения в связующем дереве. Сетевой администратор может установить эту функцию, чтобы предотвратить влияние узлов, находящихся не в ядре сети на логическое дерево, например, потому что администратор не может их полностью контролировать. Эта функция известна как Root Guard
Restricted TCN	Если включено, порт не будет отправлять на другие порты полученные оповещения об изменениях в топологии. При включении может вызывать временные сбои в сети после изменений в активной топологии связующего дерева из-за некорректно передаваемой информации об устройстве. Сетевой администратор может установить эту функцию, чтобы предотвратить наводнение узлами, находящимися не в ядре сети, информацией об изменении адресов, например, при частых изменениях состояния портов.
Point2point	Определяет, подключен ли порт к LAN в режиме точка-точка или в режиме разделяемой среды. Может быть определена автоматически, либо пользователь указывает true или false. Переход в состояние продвижения осуществляется быстрее для LAN в режиме точка-точка.
Save	Нажмите, чтобы сохранить настройки
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки

MSTI порты

Пользователь может просматривать и изменять текущие настройки STP MSTI портов. MSTI порт – виртуальный порт, отдельно настраиваемый для каждого активного CIST

(физического) порта. До отображения фактических настроек MSTI порта, нужно выбрать сам MSTI. На этой странице можно настроить MSTI порт для физических и агрегированных портов. Настройки агрегации применяются глобально.

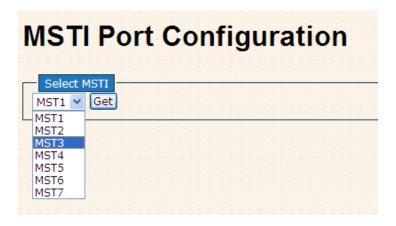


Рис. Конфигуривование **MSTI** порта

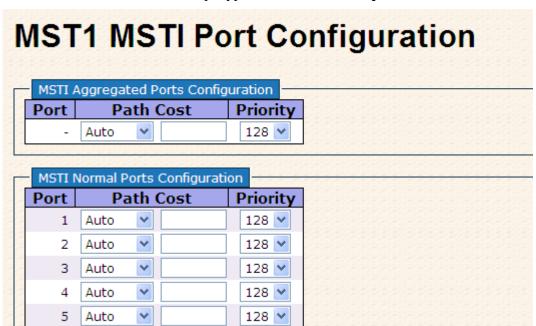


Рис. Конфигуривование MST1 MSTI порта

Поле	Описание
Port	Номер порта коммутатора, соответствующего STP CIST (и MSTI) порту
Path Cost	Стоимость пути на порту. Настройка Auto определяет стоимость пути в соответствии со скоростью физического соединения, используя

	значения, рекомендуемые 802.1D. Пользователь также может ввести собственные значения. Стоимость пути используется при установлении активной топологии сети. Порты с низшей стоимостью пути указывается как передающие порты. Допустимые значения — от 1 до 200000000.
Priority	Приоритетность портов. Используется для приоритезации портов, имеющих идентичную стоимость пути. (Смотрите выше)
Save	Нажмите, чтобы сохранить настройки
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки

STP Bridges

Просмотр состояния всех STP узлов.

Каждая строка таблицы отображает информацию об STP узле; в колонках отображена следующая информация:

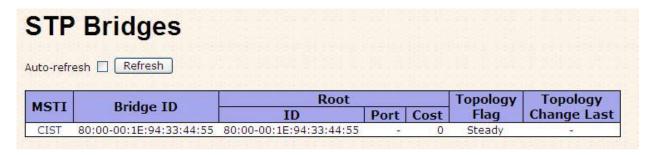


Рис. STP Bridges

Поле	Описание
MSTI	Сетевой узел. Содержит также ссылку на детальное состояние STP узла
Bridge ID	Bridge ID этого сетевого узла
Root ID	Bridge ID текущего выбранного корневого коммутатора
Root Port	Порт коммутатора, назначенный как корневой
Root Cost	Стоимость корневого пути. Значение для корневого узла — 0. Для других мостов — сумма стоимостей связей на пути с наименьшей стоимостью к корневому мосту.

Topology Flag	Текущее состояние флага, оповещающего об изменениях в топологии для этого устройства.
Topology Change Last	Время, прошедшее с последнего изменения в топологии.
Refresh	Нажмите, чтобы обновить страницу
Auto-refresh	Поставьте галочку, чтобы включить автоматическое обновление страницы.

Статус STP порта

STP CIST статус физических портов на выбранном коммутаторе

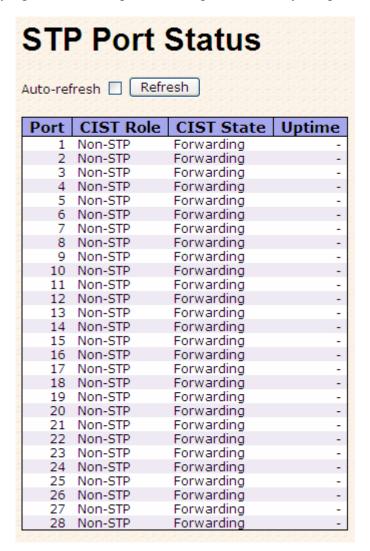


Рис. Статус STP порта

В таблице описаны основные поля:

Поле	Описание				
Port	Номер порта				
CIST Role	Роль порта как CIST порта. Роль порта может быть: AlterntaivePort, BackupPort, RootPort или DesignatedPort.				
State	Текущий статус STP порта как CIST порта. Статус порта может соответствовать одному из значений: Blocking, Learning, Forwarding.				
Uptime	Время, прошедшее после последней инициализации порта				
Refresh	Нажмите, чтобы обновить страницу				
Auto-refresh	Поставьте галочку, чтобы включить автоматическое обновление страницы.				

Статистика STP

RSTP статистика портов на выбранном коммутаторе

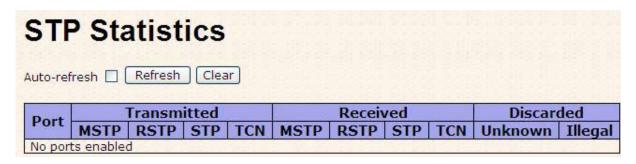


Рис. Статистика STP

Поле	Описание					
Port	Номер порта					
RSTP	Количество полученных или отправленных BPDU о состоянии RSTP					
STP	Количество полученных или отправленных BPDU о состоянии STP (устаревшая версия)					
TCN	Количество полученных или отправленных BPDU об изменениях в топологии (Topology Change Notification)					
Discarded Unknown	Количество полученных (и отброшенных) нераспознанных BPDU о состоянии покрывающего дерева					

Discarded Illegal	Количество полученных (и отброшенных) некорректных BPDU о состоянии связующего дерева					
Refresh	Нажмите, чтобы обновить страницу					
Auto-refresh	Поставьте галочку, чтобы включить автоматическое обновление страницы в определенные интервалы.					

4.1.6. VLAN

4.1.6.1. Настройка во VLAN

Настройка и мониторинг членства в VLAN для всей сети. Поддерживается до 64 VLAN. Можно добавлять и удалять VLAN, а также участвующие во VLAN порты.

VLAN Membership Configuration Port Members Delete VLAN ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 1 I <t

Рис. Настройка во VLAN

Поле	Описание
Delete	Поставьте галочку, чтобы удалить запись. Она будет удалена во время следующего сохранения.
VLAN ID	Введите VLAN ID
MAC Address	Введите МАС адрес
Port Members	Отмеченные порты являются участниками VLAN.
	Нажмите Add New VLAN, чтобы добавить новый VLAN ID. В таблицу будет добавлен пустой ряд для новой VLAN. Допустимые значения VLAN ID – от 1 до 4095.
Adding a New Static Entry	При нажатии Save, VLAN будет включена. После этого VLAN будет отображена на других устройствах в сети, но у неё не будет портовучастников. VLAN без портов-участников на устройстве будет удалена при нажатии Save. Чтобы удалить записи VLAN, нажмите Delete.

Пример:

Настройка VLAN на основе портов

(Для входящего порта)

Add new VLAN

1. VLAN ID=50 для порта 1 на странице VLAN Membership Configuration.

2. Настройка VLAN Port 1 > отключить VLAN Aware

Save Reset

VLAN Port Configuration

Port	ort VI AN Awara Erama T	VLAN Aware		Typo	Port VLAN		
Port	VLA			VLAN Aware Frame Type		Mode	ID
1				All	*	Specific 💌	50
2	,		•	All	~	Specific 💌	50
3				All	~	Specific 💌	1
4				All	~	Specific 💌	1

3. Настройка VLAN порт 1 > Mode=specific, ID=50


VLAN Port Configuration

Dout	VI AN Awara	Erama Tuna	Port VLAN	
Port	VLAN Aware	Frame Type	Mode	ID
1		All 💌	Specific 💌	50
2		All 💌	Specific 💌	50
3		All 💌	Specific 💌	1
4		All 💌	Specific 💌	1
5		All 💌	Specific 💌	1
6		All 💌	Specific 💌	1

(Для исходящего порта)

1. VLAN ID=50 для порта 2 на странице VLAN Membership Configuration.

2. Настройка VLAN порта 2 > не включать VLAN Aware

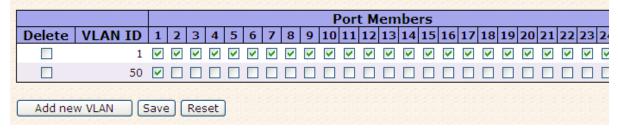
VLAN Port Configuration

Port VLAN Aware		AN Aware Frame Type		Port VLAN		
Port	VLAN Aware	riaille Type	Mode	ID		
1		All	Specific 💌	50		
2		All	Specific 💌	50		
3		All 💌	Specific 💌	1		
4		All 💌	Specific 💌	1		

3. Настройка VLAN порта 2 > Mode=specific, ID=50 (любой пакет может передаваться через исходящий порт)

VLAN Port Configuration

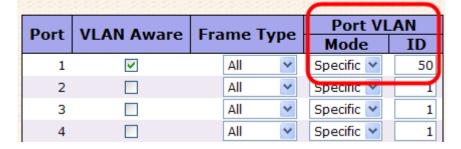
Port VLAN Aware		Erama Tuna	Port VLAN	
Port	VLAN Aware	Frame Type	Mode	ID
1		All	Specific 💌	50
2		All 💌	Specific 💌	50
3		All 💌	Specific 💌	1
4		All 💌	Specific 💌	1


Настройка 802.1Q Access port

(Для входящего порта)

1. VLAN ID=50 на странице VLAN Membership Configuration

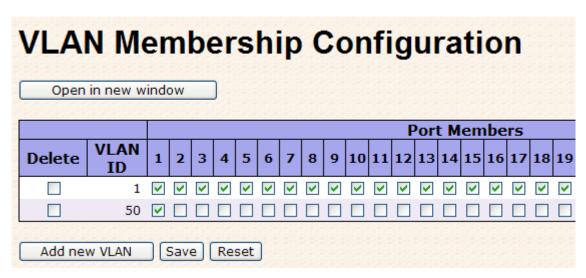
VLAN Membership Configuration

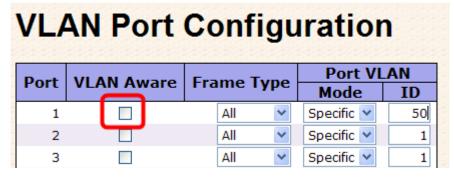

2. Настройка VLAN порта > Включить VLAN aware

VLAN Port Configuration

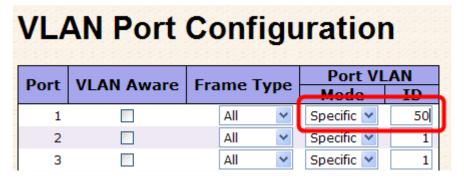
Dort	VLAN Aware Frame Type		rt VI AN Awara Frama Typa	Port VLAN			
Port			VLAN Aware		Mode	ID	
1		✓		All	~	Specific 💌	50
2				All	~	Specific 💌	1
3				All	~	Specific 💌	1
4				All	~	Specific 💌	1

3. Настройка VLAN порта > Mode=specific, ID=50


VLAN Port Configuration

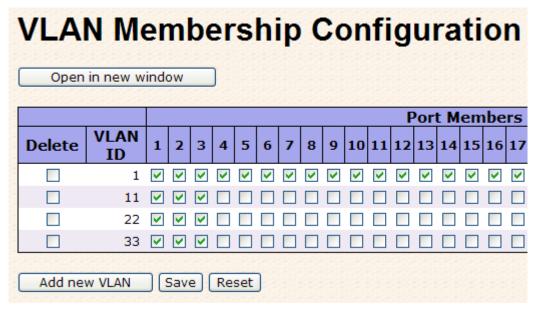

(Для исходящего порта)

1. VLAN ID=50 на странице VLAN Membership Configuration



2. Настройка VLAN порта > отключить VLAN Aware

3. Настройка VLAN порта > Mode=specific, ID=50 (пакеты без тегирования и с тегированием = 50 могут передаваться через исходящий порт)


Настройка 802.1Q транка

(Для входящего порта)

1. VLAN ID=11,22,33 на странице VLAN Membership Configuration

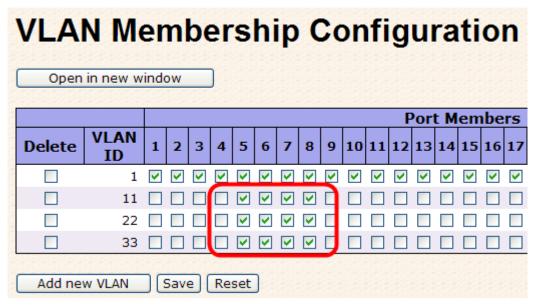
2. Настройка VLAN порта > Включить VLAN aware

VLAN Port Configuration

Dort	t VLAN Aware Frame Type		Port VLAN	
Port	VLAN AWaie	riallie Type	Mode	ID
1	~	All 💌	Specific 💌	11
2	▽	All 💌	Specific 💌	1
3	✓	All 💌	Specific 💌	1
4	▽	All 💌	Specific 💌	1
5		All 💌	Specific 💌	1

3. Настройка VLAN порта > Mode=specific, ID=11

(Если входящий пакет нетегированный, добавляется тег = 11; если входящий пакет тегированный, передаваться могут только 3 вида пакетов VID=11,22,33)



VLAN Port Configuration

Dort	VI AN Awara	Eramo Tuno	Port VL	.AN
Port	VLAN Aware	riallie Type	Mode	ID
1	~	All 🔽	Specific 💌	11
2	✓	All	Specific 💌	1
3	✓	All 💌	Specific 💌	1
4	✓	All 💌	Specific 💌	1
5		All 💌	Specific 💌	1

(Для исходящего порта)

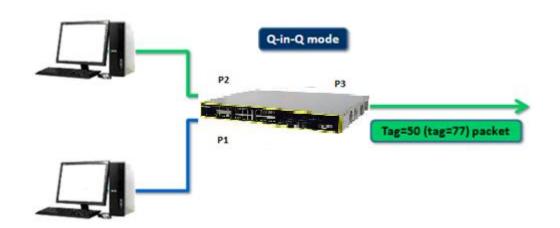
1. VLAN ID=11,22,33 на странице VLAN Membership Configuration

2. Настройка VLAN порта > включить VLAN Aware

VLAN Port Configuration

Dort	VLAN Aware	Eramo Tuno	Port VL	.AN
Port	VLAN AWaie	riaille Type	Mode	ID
1		All 💌	Specific 💌	1
2		All 💌	Specific 💌	1
3		All 💌	Specific 💌	1
4		All 💌	Specific 💌	1
5	✓	All 💌	Specific 💌	11
6	✓	All 💌	Specific 💌	1
7	✓	All 💌	Specific 💌	1
8	lacksquare	All 💌	Specific 💌	1
9		All 💌	Specific 💌	1
10		All 💌	Specific 💌	1

3. Настройка VLAN порта 2 > Mode=none


VLAN Port Configuration

Dort	VI AN Awara	Eramo Tuno	Port VL	AN
Port	VLAN AWare	Frame Type	Mode	ID
1		All	Specific 💌	1
2		All	Specific 💌	1
3		All	Specific 💌	1
4		All 💌	Specific 🗸	1
5	✓	All	Specific 💌	11
6	✓	All	Specific 💌	1
7	✓	All	Specific 💌	1
8	✓	All 💌	Specific 🗸	1
9		All 💌	Specific 💌	1
10		All 💌	Specific 💌	1

(Исходящий порт может получать пакеты с тегом = 11,22,33. Передаваться по исходящему порту может только пакет с тегом=11)

Настройка VLAN в режиме Q-in-Q

(Для входящего порта----Порт 1)

1. VLAN ID=50 для портов 1, 2 и 3 на странице VLAN Membership Configuration

2. Настройка VLAN порта > Отключить VLAN aware для порта 1

V L/	AN I OIL	Comigu	iratioi	
Port	VLAN Aware	Frame Tyne	Port VL	AN
TOIL	VLAN AWaic	Traine Type	Mode	ID
1		All 💌	Specific 💌	50
2	$\overline{\mathbf{v}}$	All 💌	None 💌	1
3	ightharpoons	All 💌	None 💌	1
4		All 💌	Specific 💌	1

VI AN Port Configuration

3. Настройка VLAN порта > Для порта 1 Mode=specific, ID=50

VLAN Port Configuration

Dort	VI AN Awara	Erama Tyna	Port VL	AN
Port	VLAN Aware	riaille Type	Mode	ID
1		All 💌	Specific 💌	50
2	▽	All	None 💌	1
3	~	All	None 💌	1
4		All	Specific 💌	1

(Для исходящего порта----Порт 2)

1. VLAN ID=50 на странице VLAN Membership Configuration

2. Настройка VLAN порта > включить VLAN Aware для портов 2 и 3

VLAN Port Configuration

Dort	VI AN Awara	Eramo Tuno	Port VL	AN
Port	VLAN Aware	riaille Type	Mode	ID
1		All 💌	Specific 💌	50
2	✓	All 💌	None 💌	1
3	~	All 💌	None 💌	1
4		All 💌	Specific 💌	1

3. Настройка VLAN порта > Mode=none

(Передаваться по исходящему порту может только пакет с тегом=50)

VLAN	Port	Config	juration
-------------	-------------	--------	----------

Dort	VI AN Awara	Eramo Tyno	Port VL	AN
Port	VLAN Aware	Frame Type	Mode	ID
1		All 💌	Specific 💌	50
2	✓	All 💌	None 💌	1
3	✓	All 💌	None 💌	1
4		All 💌	Specific 💌	1

4.1.6.2. Приватный VLAN

Настройка и мониторинг членства в приватной VLAN для коммутатора. Пользователь может добавлять и удалять приватные VLAN и порты участников каждой приватной VLAN. Приватные VLAN основываются на маске порта отправителя, который никак не связан с VLAN. Это значит, что номер VLAN и приватной VLAN могут быть одинаковы. Чтобы отправлять пакеты, порт должен быть участником и обычной, и приватной VLAN. По умолчанию, все порты находятся в режиме VLAN unaware и являются участниками VLAN 1 и приватной VLAN 1.

Порт в режиме VLAN unaware может быть участником только одной VLAN, но может быть участником нескольких приватных VLAN.

Private VLAN Membership Configuration

													P	ort	t M	em	ıbe	rs											
Delete	PVLAN ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
	1	¥	Y	¥	¥	Y	¥	V	V	V	¥	¥	V	¥	¥	¥	V	¥	¥	V	¥	¥	¥	¥	¥	¥	V	V	V
		33			33	33	333	333			33	(33)	388	-3/3	188	23		3838	-		33	(33)	333					333	
Add n	ew Private VLA	N		Sa	ave	1 [Rese	-t																					

Рис. Приватный VLAN

Поле	Описание
Delete	Поставьте галочку, чтобы удалить запись. Она будет удалена во время следующего сохранения.
Private VLAN ID	ID указанной приватной VLAN
MAC Address	Введите МАС адрес
Port Members	Отмеченные поля - порты-участники приватной VLAN. Чтобы добавить порт в приватную VLAN, поставьте галочку. По умолчанию ни один порт не является участником, все поля пустые.

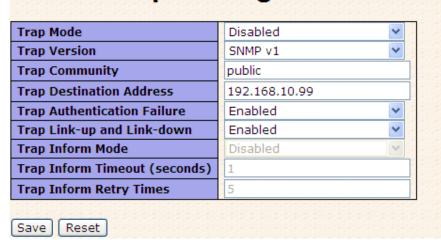
Нажмите Add New Private VLAN, чтобы добавить новую приватную VLAN. В таблицу будет добавлен пустой ряд, который можно настроить. Допустимый интервал значений идентификатора приватной VLAN равен количеству портов коммутатора. Любые значения за пределами этого интервала не будут приняты и появится предупреждение. Нажмите ОК, чтобы удалить некорректную запись, или нажмите Cancel, чтобы вернуться к настройкам и изменить значение. При нажатии Save приватная VLAN будет включена. Чтобы отменить сохранение новых приватных VLAN, нажмите Delete.

Port Isolation Configuration Port Number 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

Поле	Описание
Port Members	Отмеченные поля - порты, являющиеся участниками приватной VLAN.

4.1.7. SNMP

4.1.7.1. SNMP - System


Рис. SNMP - System

Поле	Описание
Mode	Режим работы SNMP.

	Enabled: Включить SNMP Disabled: Отключить SNMP
Version	Поддерживаемая версия SNMP. SNMPv1: Указать SNMP версию 1 SNMPv2c: Указать SNMP версию 2c SNMPv3: Указать SNMP версию 3
Read Community	Строка сообщества для права просмотра, разрешающая доступ к SNMP агенту. Допустимая длина строки от 0 до 255, разрешены только ASCII символы с 33 до 126. Поле соответствует только SNMPv1 и SNMPv2c. SNMPv3 использует USM для аутентификации и конфиденциальности, а строка сообщества соответствует таблице сообществ SNMPv3.
Write Community	Строка сообщества для права записи, разрешающая доступ к SNMP агенту. Допустимая длина строки от 0 до 255, разрешены только ASCII символы с 33 до 126 Поле соостветствует только SNMPv1 и SNMPv2c. SNMPv3 использует
	USM для аутентификации и конфиденциальности, а строка сообщества соответствует таблице сообществ SNMPv3.
Engine ID	ID устройства SNMP3. В строке должно быть четное количество шестнадцатеричных цифр (от 10 до 64), однако не допускаются все 0 или F. Изменене Engine ID приведёт к удалению всех первоначальных локальных пользователей.

SNMP Trap Configuration

Поле	Описание
Trap Mode	Режим работы SNMP trap.

	Enabled: Включить SNMP trap Disabled: Отключить SNMP trap
Trap Version	Поддерживаемая версия SNMP trap. SNMPv1: Выбрать SNMP trap версии 1 SNMPv2c: Выбрать SNMP trap версии 2c SNMPv3: Выбрать SNMP trap версии 3
Trap Community	Строка сообщества для доступа при отправке пакета с SNMP trap. Допустимая длина строки от 0 до 255, разрешены только ASCII символы с 33 до 126
Trap Destination Address	Адрес назначения SNMP trap
Trap Destination IPv6 Address	IPv6 адрес назначения trap коммутатора. 128-битный IPv6 адрес записывается в виде восьми полей из максимум 4 шестнадцатиричных цифр с двоеточиями, разделяющими каждое поле (:). Например, "fe80:215:c5ff:fe03:4dc7". Символ "::" может использоваться как сокращенный способ отображения нескольких 16-битных групп нулей; но появляться может только один раз. Также используется для корректных IPv4 адресов. Например, "::192.1.2.34".
Trap Authentification Failure	Устройству SNMP разрешено генерировать trap о сбое аутентификации. Enabled: Включить оповещения SNMP trap о сбоях аутентификации Disabled: Отключить оповещения SNMP trap о сбоях аутентификации
Trap Link-up and Link-down	Оповещения SNMP trap о состоянии портов Enabled: Включить оповещения SNMP trap о включении и отключении связи Disabled: Отключить оповещения SNMP trap о включении и отключении связи
Trap Inform Mode	Режим оповещения SNMP trap. Enabled: Включить режим оповещения SNMP trap. Disabled: Отключить режим оповещения SNMP trap.
Trap Inform Timeout (seconds)	Время, в течение которого отправляются оповещения SNMP trap. Допустимый интервал от 0 до 2147.
Trap Inform Retry Times	Количество попыток отправки оповещения SNMP trap. Допустимый интервал от 0 до 255.

4.1.7.2. SNMP - сообщества

Настройка таблицы SNMP-сообществ. Ключевой индекс - Community

SNMPv3 Communities Configuration

Delete	Community	Source IP	Source Mask
	public	0.0.0.0	0.0.0.0
	private	0.0.0.0	0.0.0.0
Add n	ew community	Save Rese	et

Рис. SNMР - Сообщества

В таблице описаны основные поля:

Поле	Описание
Delete	Чтобы удалить запись, поставьте галочку. Она будет удалена после следующего сохранения.
Community	Строка сообщества, разрешающая доступ SNMPv3 агенту. Допустимая длина строки от 1 до 32, разрешены только ASCII символы с 33 до 126.
Source IP	Исходный адрес для доступа к SNMP
Source Mask	Исходная маска для доступа к SNMP

4.1.7.3. Пользователи SNMP

Настройка таблицы пользователей SNMPv3. Ключевые индексы - ID устройства и имя пользователя.

SNMPv3 Users Configuration

Delete	Engine ID	User Name	Security Level	Authentication Protocol	Authentication Password		Privacy Password
	800007e5017f000001	default_user	NoAuth, NoPriv	None	None	None	None
Add new user Save Reset							

Рис. Пользователи SNMP

Поле	Описание
Delete	Чтобы удалить запись, поставьте галочку. Она будет удалена после

	следующего сохранения.
Engine ID	ID устройства SNMP3. В строке должно быть четное количество шестнадцатеричных цифр (от 10 до 64), однако не допускаются все 0 или F. Архитектура SNMPv3 использует модель безопасности на основе пользователя (USM) для безопасности сообщений и VACM для управления доступом. Для записи USM ключами будут usmUserEngineID и usmUserUsername. В обычном агенте usmUserEngineID всегда является значением snmpEngineID. Оно также может принимать значение snmpEngineID удаленного SNMP устройства, на которое пользователь может передавать данные. Другими словами, если Engine ID равен Engine ID системы, пользователь – локальный, в другом случае – удаленный.
User Name	Строка, определяющая имя пользователя. Допустимая длина строки от 1 до 32, разрешены только ASCII символы с 33 до 126.
Security Level	Модель безопасности. NoAuth, NoPriv: Отсутствие аутентификации и приватности Auth, NoPriv: Аутентификация и отсутствие приватности Auth, Priv: Аутентификация и приватность Значение уровня безопасности изменять нельзя, если запись уже введена. Прежде всего убедитесь, что значение введено корректно.
Authentication Protocol	Протокол аутентификации. None: Отсутствие протокола аутентификации MD5: Флаг, указывающий на использование пользователем протокола аутентификации MD5. SHA: Флаг, указывающий на использование пользователем протокола аутентификации SHA. Значение уровня безопасности изменять нельзя, если запись уже введена. Прежде всего убедитесь, что значение введено корректно.
Authentication Password	Приватный пароль. Для протокола аутентификации MD5 допустимая длина строки от 8 до 32. Для протокола аутентификации SHA - от 8 до 40. разрешены только ASCII символы с 33 до 126.
Privacy Protocol	Протокол приватности None: Отсутствие протокола приватности DES: Флаг, указывающий на использование пользователем протокола аутентификации DES.
Privacy Password	Пароль приватности. Допустимая длина строки от 8 до 32, разрешены только ASCII символы с 33 до 126.

4.1.7.4. SNMP группы

Настройка таблицы групп SNMPv3. Ключевые индексы – модель безопасности и имя безопасности.

Delete	Security Model	Security Name	Group Name
	v1	public	default_ro_group
	v1	private	default_rw_group
	v2c	public	default_ro_group
	v2c	private	default_rw_group
	usm	default_user	default_rw_group

Рис. SNMP группы

В таблице описаны основные поля:

Поле	Описание
Delete	Чтобы удалить запись, поставьте галочку. Она будет удалена после следующего сохранения.
Security Model	Модель безопасности. v1: Зарезервировано для SNMPv1 v2c: Зарезервировано для SNMPv2c usm: Модель безопасности на основе пользователя (USM)
Security Name	Имя безопасности. Допустимая длина строки от 1 до 32, разрешены только ASCII символы с 33 до 126.
Group Name	Имя группы. Допустимая длина строки от 1 до 32, разрешены только ASCII символы с 33 до 126.

4.1.7.5. Таблица просмотра SNMP

Настройка таблицы просмотров SNMPv3. Ключевые индексы – имя просмотра и OID поддерева

SNMPv3 Views Configuration

Рис. Таблица просмотра SNMP

В таблице описаны основные поля:

Поле	Описание
Delete	Чтобы удалить запись, поставьте галочку. Она будет удалена после следующего сохранения.
View Name	Имя просмотра. Допустимая длина строки от 1 до 32, разрешены только ASCII символы с 33 до 126.
View Type	Тип просмотра. Included: Флаг, показывающий, что просматриваемое поддерево должно быть включено Excluded: Флаг, показывающий, что просматриваемое поддерево должно быть исключено В общем, если значение view type — excluded, то должно существовать ещё одно значение просмотра, чей тип - included, и которое является более общим, чем данное.
OID Subtree	OID, определяющий корень поддерева, добавляемый к данному просмотру. Допустимая длина OID от 1 до 128, разрешены только цифры или звездочки (*).

4.1.7.6. SNMP-Accesses

Настройка таблицы SNMPv3 Acesses. Ключевые индексы – имя группы, модель безопасности и уровень безопасности.

Рис. SNMP-Accesses

В таблице описаны основные поля:

Поле	Описание
Delete	Чтобы удалить запись, поставьте галочку. Она будет удалена после следующего сохранения.
Group Name	Имя группы. Допустимая длина строки от 1 до 32, разрешены только ASCII символы с 33 до 126.
Security Model	Модель безопасности. Апу: Допустима любая модель безопасности (v1 v2c usm) v1: Зарезервировано для SNMPv1 v2c: Зарезервировано для SNMPv2c usm: Модель безопасности на основе пользователя (USM)
Security Level	Модель безопасности. NoAuth, NoPriv: Отсутствие аутентификации и приватности Auth, NoPriv: Аутентификация и отсутствие приватности Auth, Priv: Аутентификация и приватность
Read View Name	Имя MIB view, определяющее MIB объекты, для которых можно запросить текущие значения. Допустимая длина строки от 1 до 32, разрешены только ASCII символы с 33 до 126.
Write View Name	Имя MIB view, определяющее MIB объекты, для которых можно УСТАНОВИТЬ новые значения. Допустимая длина строки от 1 до 32, разрешены только ASCII символы с 33 до 126.

4.1.8. Приоритезация трафика

4.1.8.1. Настройка портов

Настройки QoS для каждого порта.

Фреймы можно классифицировать на 4 QoS класса приоритета: низкий, нормальный, средний и высокий. Управлять классификацией можно с помощью QCL, назначенного каждому порту.

QCL состоит из упорядоченного списка, содержащего до 12 QCE.

Каждый QCE можно использовать для классификации фреймов на определенные QoS классы.

Эта классификация может быть основана на таких параметрах, как VLAN ID, UDP/TCP порт, IPv4/IPv6 DSCP или Tag Priority.

Фреймы, не подходящие ни к одному QCE, имеют QoS класс, назначенный для порта по умолчанию.

Настройка QoS портов

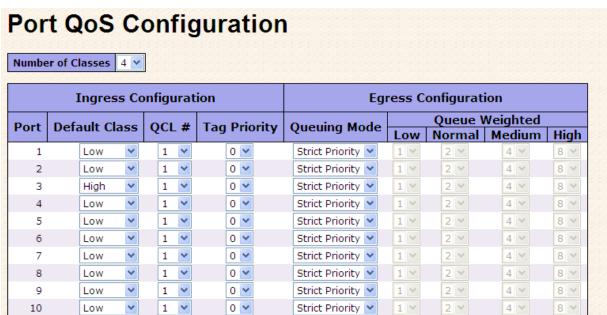


Рис. Настройка QoS портов

В таблице описаны основные поля:

Поле	Описание
Port	Для каждого порта приватной VLAN есть поле.
Default Class	Настройка QoS класса по умолчанию для порта, т.е. QoS класса для фреймов, не подходящих ни к одному QCE в QCL.
QCL#	Выберите QCL, который будет использоваться для указанного порта
Tag Priority	Выберите приоритет тега по умолчанию для указанного порта при добавлении тега к нетегированным фреймам.
Queuing Mode	Выберите режим очереди для указанного порта
Queue Weighted	Настройка взвешенной очереди (Низкая, Нормальная, Средняя, Высокая) при значении Queuing Mode – Weighted.

4.1.8.2. Список управления QoS

Список QCE для определенного QCL

Кадры можно классифицировать на 4 QoS приоритета: низкий, нормальный, средний и высокий.

Управлять классификацией можно с помощью QoS на каждом порту.

QCL состоит из упорядоченного списка, содержащего до 12 QCE.

Каждый QCE можно использовать для классификации фреймов на определенные QoS классы.

Эта классификация может быть основана на таких параметрах, как VLAN ID, UDP/TCP порт, IPv4/IPv6 DSCP или Tag Priority.

Фреймы, не подходящие ни к одному QCE, имеют QoS класс, назначенный по умолчанию для порта.

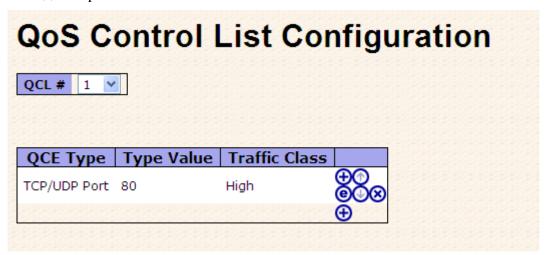


Рис. Список QCE для определенного QCL

Поле	Описание
QCL#	Выберите QCL, чтобы показать таблицу со всеми QCE для указанного QCL.
QCE Type	Определяет поле фрейма, которое QCE рассматривает для определения QoS класса фрейма. Типы QCE: Еthernet: поле типа Ethernet. Если фрейм тегированный, Ethernet Туре следует за заголовком тега. VLAN ID: Применяется только если фрейм имеет VLAN тег. TCP/UDP Port: IPv4 TCP/UDP порт отправителя или получателя. DSCP: IPv4 и IPv6 DSCP ТоS: Приоритет размерностью 3 бит в ТоS байте заголовка IPv4/IPv6 (поле DS)

	Tag Priority: Приоритет пользователя. Применяется только если фрейм имеет тег VLAN или приоритета.
Type Value	Значение согласно его QCE типу. Ethernet Type: значение Ethernet Type VLAN ID: VLAN ID TCP/UDP Port: диапазон портов протоколов TCP или UDP DSCP: значение IPv4/IPv6 DSCP
Traffic Class	QoS класс, связанный с QCE
Modification Buttons	Можно настроить в таблице каждый QCE, используя кнопки: : Вставить новый QCE перед текущей строкой : Изменить QCE : Перемещение QCE вверх по списку : Перемещение QCE вниз по списку : Удалить QCE : Нижний плюс добавляет новую запись в конце списка QCL

4.1.8.3. Предотвращение штормов

Настройка функции предотвращения штормов.

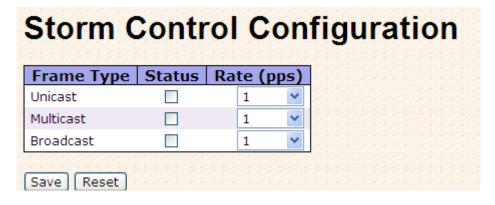


Рис. Предотвращение штормов

Ограничение количества пакетов в одноадресных, многоадресных и широковещательных штормах. Они влияют только на штормовые кадры, то есть те, у которых (VLAN ID, DMAC) пара не отображена в таблице MAC адресов.

Скорость равна 2ⁿ, где n ≤15, или No Limit. Единицей скорости может быть либо pps (пакеты в секунду), либо kpps (килопакеты в секунду). Можно настроить скорость одноадресной, многоадресной и широковещательной передачи пакетов отдельно. (Примечание: Фреймы, переданные на CPU коммутатора, всегда ограничены приблизительно до 4 kpps. Например, широковещательная передача в управлении VLAN

ограничена до этого уровня. Управляющую VLAN можно настроить на странице настроек IP).

В таблице описаны основные поля:

Поле	Описание
Frame Type	Настройки указанного типа кадров: unicast, multicast или broadcast.
Status	Включить или отключить предотвращение шторма для указанного типа кадров
Rate	Единица скорости – пакетов в секунду (pps). Настроить скорость как: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1K, 2K, 4K, 8K, 16K, 32K, 64K, 128K, 256K, 512K или 1024K. 1 kpps = 1002.1 pps

4.1.8.4. Wizard

Wizard позволяет быстро настроить QCL.

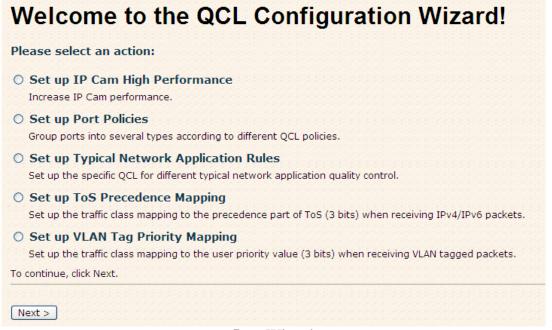


Рис. Wizard

Поле	Описание
Set up Port Policies	Сгруппировать порты по типам согласно QCL политике.

Set up Typical Network Application Rules	Указать определённый QCL для контроля качества стандартных сетей.
Set up ToS Precedence Mapping	Указать класс передачи данных, соответствующий полю приоритета ToS (3 бита) при получении IPv4/IPv6 пакетов.
Set up VLAN tag Priority Mapping	Указать класс передачи данных, соответствующий приоритету пользователя (3 бита) при получении пакетов с VLAN тегом.

4.1.9. IGMP

4.1.9.1. IGMP Snooping

Hастройка IGMP Snooping.

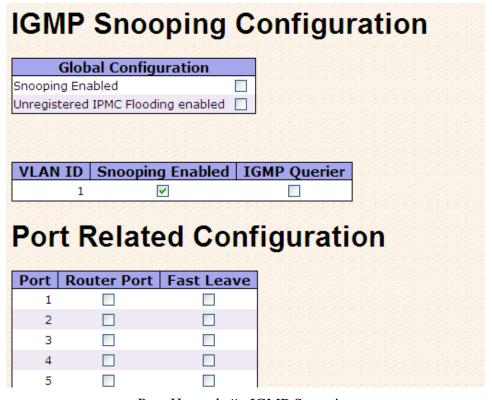


Рис. Интерфейс IGMP Snooping

Поле	Описание
Snooping Enabled	Включить IGMP Snooping
Unregistered IPMC Flooding	Включить передачу незарегистрированных ІРМС

enabled	
VLAN ID	Идентификатор VLAN
IGMP Snooping enabled	Включить IGMP Snooping для VLAN
IGMP Querier	Включить IGMP Querier во VLAN. Querier будет отправлять запросы, если в течение 255 секунд после включения IGMP Querier сообщение не поступит. Интервал каждого Querier – 125 секунд, он перестанет действовать как IGMP Querier, если получит Querier от других устройств.
Router Port	Назначьте порты как порты маршрутизатора. Портом маршрутизатора является порт Ethernet коммутатора, который ведет к устройству 3 уровня, поддерживающему групповую рассылку или к IGMP Querier. Если порт, участвующий в агрегации, определен как порт маршрутизатора, вся агрегация будет работать как порт маршрутизатора.
Fast Leave	Включить на порту функцию быстрого отключения

4.1.9.2. Состояние IGMP Snooping

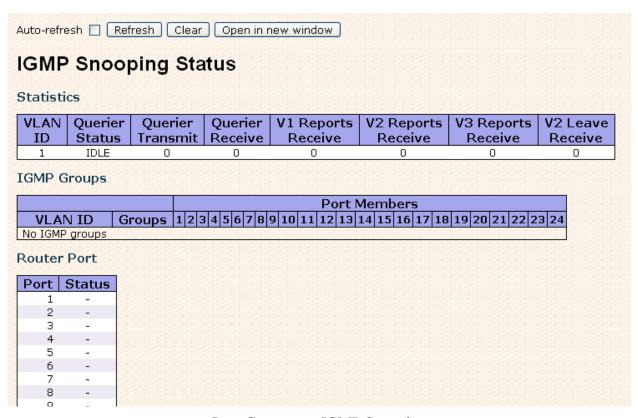


Рис. Состояние IGMP Snooping

В таблице описаны основные поля:

Поле	Описание
VLAN ID	Идентификатор VLAN
Groups	IGMP группа. Максимальное количество – 128 групп для каждой VLAN
Port Members	Порты, которые участнвуют в группе
Querier Status	Статус Querier – Active или Idle
Querier Transmit	Количество переданных Querier
Querier Receive	Количество полученных Querier
V1 Reports Receive	Количество полученных V1 отчетов
V2 Reports Receive	Количество полученных V2 отчетов
V3 Reports Receive	Количество полученных V3 отчетов
V2 Leave Receive	Количество полученных V2 отключений
Refresh	Нажмите, чтобы обновить страницу
Clear	Очистить все счетчики
Auto-refresh	Поставьте галочку, чтобы включить автоматическое обновление страницы.

4.1.10. Безопасность

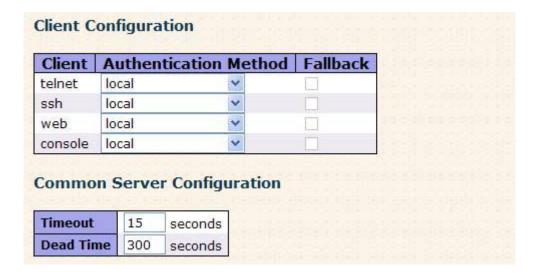
4.1.10.1. ACL

Настройка ACL параметров (ACE) каждого порта коммутатора. Эти параметры влияют на фреймы, полученные на порту, пока фрейм не совпадет с ACE.

ACL Ports Configuration

Refresh Clear

Port	Policy ID	Action	Rate Limiter ID	Port Copy	Logging	Shutdown	Counter
1	1 💙	Permit 💌	Disabled 💌	Disabled 💌	Disabled 💌	Disabled 💌	0
2	1 🗸	Permit 💌	Disabled 🗸	Disabled 💌	Disabled 💌	Disabled 💌	0
3	1 🕶	Permit 💌	Disabled 💌	Disabled 💌	Disabled 💌	Disabled 💌	0
4	1 ~	Permit 💌	Disabled 💌	Disabled 💌	Disabled 💌	Disabled 🕶	0
5	1 🕶	Permit 💌	Disabled 💌	Disabled 💌	Disabled 💌	Disabled 💌	0
6	1 🗸	Permit 🕶	Disabled 🗸	Disabled 💌	Disabled 💌	Disabled 💌	0
7	1 🕶	Permit 💌	Disabled 💌	Disabled 💌	Disabled 💌	Disabled 💌	0
8	1 ~	Permit 💌	Disabled V	Disabled 💌	Disabled 💌	Disabled 🕶	0
9	1 💙	Permit 💌	Disabled 💌	Disabled 💌	Disabled 💌	Disabled 💌	0
10	1 ~	Permit 🕶	Disabled V	Disabled V	Disabled 💌	Disabled 🗸	0


Рис. ACL

Поле	Описание
Port	Номер настраиваемого порт
Policy ID	Выберите идентификатор политики порта. Допустимые значения от 1 до 8. Значение по умолчанию – 1.
Action	Разрешить (Permit) или запретить (Deny) передачу данных. По умолчанию – Permit.
Rate Limiter ID	Выберите, какое ограничение скорости применить к указанному порту. Допустимые значения – от 1 до 15, или Disabled. По умолчанию – Disabled.
Port Copy	Выберите, на какой порт копировать данные. Допустимые значения – Disabled или указанный номера порта. По умолчанию – Disabled.
Logging	Определите статус ведения журнала для указанного порта. Enabled: Фреймы, полученные через порт, хранятся в журнале событий. Disabled: Фреймы, полученные через порт, не вносятся в журнал событий. По умолчанию — Disabled. Обратите внимание, что объем памяти журнала событий и скорость его заполнения ограничены.
Shutdown	Укажите режим работы порта. Еnabled: Порт, через который получен фрейм, будет отключен. Disabled: Функция отключена. По умолчанию – Disabled.
Counter	Определяет количество фреймов, соответствующих указанному АСЕ.

4.1.10.2. 802.1x

Настройка аутентификации администратора при авторизации на устройстве через Telnet, SSH или интернет.

Настройка клиента

В таблице содержится один ряд для каждого клиента и несколько столбцов:

Поле	Описание
Client	Клиент, настройки которого представлены ниже
Authentication Method	Метод аутентификации. None: аутентификация отключена и вход в систему невозможен. Local: аутентификация через локальную базу данных Radius: аутентификация через удаленный Radius сервер Тасасs+: аутентификация через удаленный TACACS+ сервер
Fallback	Поставьте галочку, чтобы включить функцию Fallback для локальной аутентификации. Если ни один из настроенных серверов аутентификации не отвечает, используется локальная база данных. Это возможно только если Authentication Method имеет значение, отичное от none и local.
Save	Нажмите, чтобы сохранить настройки
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки

Общие настройки серверов

Эти настройки являются общими для всех серверов аутентификации

Поле	Описание
Timeout	Время, в течение которого ожидается ответ с сервера — от 3 до 3600 секунд. Если сервер не отвечает в течение указанного времени, возможно он находится в нерабочем состоянии, устройство продолжит работу с другим сервером (если такие есть). RADIUS сервера используют UDP протокол, ненадежный по сути. Чтобы предотвратить потерю фреймов, интервал, в течение которого ожидается ответ, разделен на 3 части одинакового размера. Если по окончании части не получен ответ, запрос отправляется снова. Алгоритм позволяет отправлять запросы Radius серверу до 3 раз до того, как он будет считаться нерабочим.
Dead Time	Dead Time — период от 0 до 3600 секунд, в течение которого коммутатор не будет отправлять новые запросы на сервер, от которого не удалось получить ответит на предыдущий запрос. Это предохранит сервер от постоянных запросов со стороны коммутаторов. Чтобы включить функцию, укажите значение Dead Time больше 0, но только если серверов указано больше, чем один.

RADIUS Authentication Server Configuration

#	Enabled	IP Address	Port	Secret
1			1812	
2			1812	
3			1812	
4			1812	
5			1812	

RADIUS Accounting Server Configuration

#	Enabled	IP Address	Port	Secret
1			1813	
2			1813	
3			1813	
4			1813	
5			1813	

74

Настройка Radius сервера

Поле	Описание
#	Homep Radius сервера, настройки которого представлены ниже
Enable	Поставьте галочку, чтобы включить Radius сервер
IP Address	Поставьте галочку, чтобы включить fallback для локальной аутентификации. Если ни один из настроенных серверов аутентификации не отвечает, используется локальная база данных. Это возможно только если Authentication Method имеет значение, отличное от none и local.
Port	UDP порт, использующийся Radius сервером. Если значение – 0, будет использован порт по умолчанию (1812).
Secret	Секретный ключ, совместно используемый Radius сервером аутентификации и всеми коммутаторами. Его длина может быть до 29 знаков.

4.1.11. Мониторинг и диагностика

4.1.11.1. Таблица МАС адресов

Настройка таблицы MAC адресов. Установите интервалы хранения в динамической таблице и настройте статическую таблицу MAC адресов.

MAC Address Ta	ble Configuration						
Aging Configuration							
Disable Automatic Aging							
Age Time 30	00 seconds						
MAC Table Learning							
	Port Members						
1 2 3 4 5 6 Auto	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ① ① ① ② ② ② ② ② ② ② ② ② ② ② ③ ② ③ ③ ③ ③						
Static MAC Table Config	uration						
	Port Members						
Delete VLAN ID MAC	C Address 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24						
Add new static entry							
Save Reset							

Рис. Таблица МАС адресов

Период старения МАС адресов в таблице

По умолчанию, динамические записи удаляются из МАС таблицы через 300 секунд. Другими словами, записи устаревают в таблице.

Введите значение в секундах, чтобы настроить период старения. Например, Age time______секунд.

Допустимые значения - от 10 до 1000000 секунд.

Поставьте галочку на Disable automatic aging, чтобы отключить автоматическое старение динамических записей.

Заполнение таблицы МАС адресов

Если режим запоминания для указанного порта выделен серым цветом, этот режим контролируется другим модулем, поэтому пользователь не может его изменить. Пример такого модуля — Аутентификация на основе MAC ниже 802.1x

												F	or	t M	em	be	rs											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Auto	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Disable	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Secure	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C

Рис. Заполнение таблицы МАС адресов

В таблице описаны основные поля:

Поле	Описание
Auto	Автоматическое обучение начнется как только будет получен кадр с неизвестным МАС адресом отправителя.
Disable	Заполнение таблицы не производится
Secure	Учитываются только статические МАС записи, остальные фреймы отбрасываются. Примечание: Убедитесь, что устройство, использующееся для управления коммутатором, добавлено в таблицу статических МАС адресов до изменений в режиме обучения, иначе он будет потерян и может быть восстановлен только с помощью другого (незащищенного) порта или при подключении к коммутатору через последовательный интерфейс.

Таблица статических МАС адресов

В этой таблице показан список статических МАС адресов. Таблица статических МАС адресов может содержать 64 записи.

В таблице MAC адресов в первую очередь отображен VLAN ID, затем MAC адреса.

Поле	Описание
Delete	Чтобы удалить запись, поставьте галочку. Она будет удалена после следующего сохранения.
VLAN ID	Введите VLAN ID
MAC Address	Введите МАС адрес
Port Members	Связанные порты.
Adding a New Static Entry	Нажмите Add new static entry, чтобы добавить новую запись в таблицу статических MAC адресов. Укажите VLAN ID, MAC адрес и порты для новой записи. Нажмите Save.

4.1.11.2. Зеркалирование

Настройка зеркалирования портов.

Чтобы устранить неполадки в сети, данные могут быть скопированы (или отражены) на зеркальный порт, на котором специальное устройство будет анализировать поток данных.

Данные для копирования на зеркальный порт:

Все кадры, полученные через указанный порт (также известно как зеркалирование входящего трафика)

Все фреймы, переданные через указанный порт (также известно как зеркалирование исходящего трафика)

Порт, на который отражены данные, известен как зеркальный порт. Фреймы отражаются на порту, на котором включено зеркалирование входящего (rx) либо исходящего (tx) трафика. Disabled – отключить зеркалирование.

Рис. Зеркалирование

В таблице описаны основные поля:

Поле	Описание
Port	Логический порт, настройки которого представлены ниже.
Mode	Выберите режим зеркалирования. Rx only: Данные, полученные через указанный порт, отражаются. Переданные данные не отражаются. Tx only: Данные, отправленные через указанный порт, отражаются. Полученные данные не отражаются. Disabled: Ни полученные, ни отправленные данные не отражаются. Enabled: И полученные, и отправленные данные отражаются. Примечание: На том порту, куда зеркалируются данные, они передаются только один раз, поэтому для таких портов доступны только режимы Disabled и Rx.

4.1.11.3. Журнал событий

Информация о событиях на коммутаторе.

Рис. Журнал событий

Поле	Описание			
ID	Идентификатор (≥1) записи в журнале событий			
Level	Уровень события. Типы уровней: Info: Информационный уровень Warning: Уровень оповещения Error: Уровень ошибки All: Все уровни			
Time	Время записи в журнале событий			

Message	МАС адрес коммутатора
Refresh	Обновление записей в журнале событий, начиная с ID текущей записи
Clear	Очистить все записи в журнале событий
Auto- refresh	Поставьте галочку, чтобы включить автоматическое обновление страницы.
<<	Обновление записей в журнале событий, начиная с ID первой доступной записи
<<	Обновление записей в журнале событий, заканчивая последней показанной записью
>>	Обновление записей в журнале событий, начиная с последней показанной записи
>>	Обновление записей в журнале событий, заканчивая ID последней доступной записи

4.1.11.4. Подробные сведения

Подробная информация журнала событий.

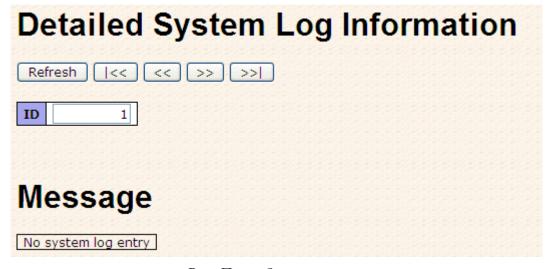


Рис. Подробные сведения

Поле	Описание
ID	Идентификатор (≥1) записи в журнале событий
Message	Подробные сообщения о записи в журнале событий

Refresh	Обновление записей в журнале событий, начиная с ID текущей записи
Clear	Очистить все записи в журнале событий
<<	Обновление записей в журнале событий, начиная с ID первой доступной записи
<<	Обновление записей в журнале событий, заканчивая последней показанной записью
>>	Обновление записей в журнале событий, начиная с последней показанной записи
>>	Обновление записей в журнале событий, заканчивая ID последней доступной записи

4.1.11.5. Просмотр статистики трафика

Просмотр статистики общего трафика на всех портах коммутатора.

Port Statistics Overview Auto-refresh Refresh Clear Drops **Packets Bytes** Errors Filtered Port Receive Transmit Receive Transmit Receive Receive Transmit 4 5 0 0 12 21 22

Рис. Просмотр статистики трафика

Поле	Описание
Ports	Номер порта

Packets	Количество полученных и отправленных пакетов на каждом порту
Bytes	Количество полученных и отправленных байтов на каждом порту
Errors	Количество фреймов, получивших сообщение об ошибке, и количество незавершенных передач на каждом порту
Drops	Количество фреймов, отброшенных по причине переполнения входящих или исходящих очередей.
Filtered	Количество полученных фреймов, отфильтрованных в процессе передачи
Auto- refresh	Поставьте галочку, чтобы включить автоматическое обновление страницы.
Refresh	Обновление записей в журнале событий, начиная с ID текущей записи
Clear	Очистить все счетчики записей

4.1.11.6. Подробная статистика

Подробная статистика трафика для выбранного порта коммутатора. Выберите порт коммутатора, чтобы получить о нем детальную информацию.

Показанные счётчики переданной информации и счётчики ошибок являются общими для полученной и отправленной информации.

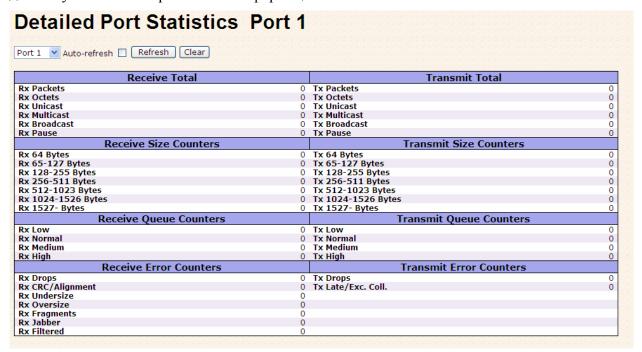


Рис. Подробная статистика

Поле	Описание
Rx and Tx Packets	Количество полученных и отправленных (корректных и битых) пакетов
Rx and Tx Octets	Количество полученных и отправленных (корректных и битых) байтов. В этом количестве содержатся FCS, но исключаются биты согласования.
Rx and Tx Unicast	Количество полученных и отправленных (корректных и битых) одноадресных пакетов
Rx and Tx Multicast	Количество полученных и отправленных (корректных и битых) многоадресных пакетов
Rx and Tx Broadcast	Количество полученных и отправленных (корректных и битых) широковещательных пакетов
Rx and Tx Pause	Количество MAC Control фреймов, полученных или отправленных через указанный порт и имеющих орсоdе (код операции), предписывающий выполнение операции PAUSE.
Rx Drops	Количество отклоненных фреймов из-за переполнения буфера приема или передачи.
Rx CRC/Alignment	Количество фреймов, полученных с ошибками CRC
Rx Undersize	Количество пакетов размером меньше минимального, полученных с валидным CRC
Rx Oversize	Количество пакетов размером больше максимального, полученных с валидным CRC
Rx Fragments	Количество пакетов размером меньше минимального, полученных с недопустимым CRC
Rx Jabber	Количество пакетов размером больше максимального, полученных с недопустимым CRC
Rx Filtered	Количество полученных фреймов, отфильтрованных в процессе передачи
Tx Drops	Количество фреймов, отклоненных из-за перегруженности буфера вывода
Tx Late/Exc.Coll.	Количество фреймов, отклоненных из-за повторяющейся или поздней коллизии

Короткие фреймы – размером меньше 64 байтов.

Длинные фреймы – размером больше указанной максимальной длины фрейма на указанном порту.

4.1.11.7. Ping-запросы

Отправка ICMP Ping пакетов для проверки IP-соединения.

Рис. Ping-запросы

После нажатия Start будут отправлены 5 пакетов ICMP, и после получения ответа будут отображены порядковый номер и время между отправкой запроса и получением ответа. Страница будет обновляться автоматически, пока не будут получены ответы на все пакеты, или пока не истечет время ожидания.

PING6 server ::10.10.132.20

64 bytes from ::10.10.132.20: icmp_seq=0, time=0ms

64 bytes from ::10.10.132.20: icmp_seq=1, time=0ms

64 bytes from ::10.10.132.20: icmp_seq=2, time=0ms

64 bytes from ::10.10.132.20: icmp_seq=3, time=0ms

64 bytes from ::10.10.132.20: icmp_seq=4, time=0ms

Sent 5 packets, received 5 OK, 0 bad

Настройка ІСМР пакетов:

Поле	Описание
IP Address	IP адрес назначения
Ping Size	Размер полезной нагрузки ICMP пакета. Допустимые значения – от 8 до 1400 байтов.

4.1.11.8. VeriPHY

VeriPHY Cable Diagnostics

Port All V

Cable Status								
Port	Pair A	Length A	Pair B	Length B	Pair C	Length C	Pair D	Length D
1					(77)	77	(55)	
2				77	77	77		-
3	055				1777	77	1875	-
4				77				
5				77	177	77	1871	
6				77		77.	77	77
7					1,77	77	1875	-
8				77.		772	77.	77
9					(77)	77	1875	
10			-77	77	77.	77.0		77
11						77	177	
12				77		774	77	77
13					77	77		-
14				77		770	77	7
15				77		77	27.	5
16				77	.77	770	77	7
17				27.	100	77.	177	5
18			-77	-77	77		77	7
19	(55)			57.0	177		277	
20			-77	77	77		77	77
21	(55)			57.0	77		77	
22							11.20.1	_

Рис. VeriPHY

Нажмите Start, чтобы запустить диагностику. Это займет примерно 5 секунд. Если выбраны все порты, это может занять приблизительно 15 секунд. После завершения, страница автоматически обновится и вы сможете просмотреть результаты диагностики кабеля в таблице состояния кабеля. Имейте ввиду, что VeriPHY подходит только для кабелей длиной 7-140 метров. Порты со скоростью 10 и 100 мбит/с будут отключены при запуске VeriPHY. Поэтому, запуск VeriPHY на управляющем порту со скоростью 10 и 100 мбит/с приведет к тому, что коммутатор перестанет отвечать на запросы, пока VeriPHY не завершит работу.

Поле	Описание
Port	Порт, который вы хотите диагностировать с помощью VeriPHY Cable

	Diagnostics
Cable Status	Port: номер порта Pair: состояние витой пары Length: длина (в метрах) витой пары

4.1.12. Питание через Ethernet (PoE)

4.1.12.1. Конфигурация РоЕ – Резервирование питания

3 способа распределения мощностей питания по портам.

Power Over Ethernet Configuration

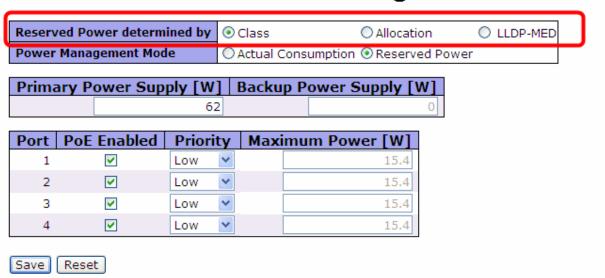


Рис. Конфигурация РоЕ – Резервирование питания

Поле	Описание
Allocated mode	Пользователи сами определяют количество питания, которое порт может использовать. Потребляемое питание для каждого порта отображено в столбце Maximum Power.
Class mode	Каждый порт автоматически определяет, сколько питания потреблять в соответствии с классом подключенного устройства. Существует 3 класса потребителей: 4, 7 и 15,4 Ватт (В этом режиме в столбце Maximum Power не имеют значения).

LLDP- MED	Этот режим схож с Class mode. Каждый порт определяет количество потребляемого питания в соответствии с полученной РоЕ информацией с помощью LLDP протокола. Если порт не получит информацию, питание
mode	будет подведено с помощью Class mode. (В этом режиме в столбце Maximum Power не имеют значения)

(Для всех режимов: если на порту потребляется больше питания, чем требуется, порт отключится)

4.1.12.2 Настройка РоЕ – Управление питанием

Есть два режима, определяющих, когда порт должен выклдючиться.

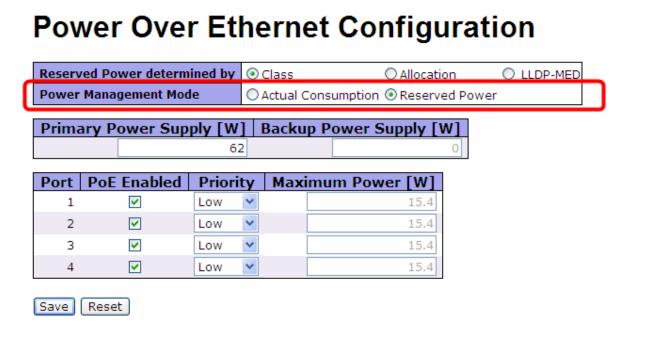


Рис. Настройка РоЕ – Управление питанием

Поле	Описание
Actual Consumption	Если потребление питания на портах превышает количество, которое может подавать источник питания, или превышает количество необходимого питания, то порты будут отключены. В соответствии с приоритетностью, порты будут отключены. Если два порта имеют одинаковый приоритет, будет отключен тот, у которого наивысший номер.
Reserved Power	Если общее требуемое питание превышает количество, которое может подавать источник питания. Питание не будет подключено, если питаемые устройства будут запрашивать больше питания, чем доступно.

4.1.12.3. Настройка РоЕ – Основной и резервный источники питания

У РоЕ может быть 2 источника питания. Один используется как основной источник питания, и один как резервный. В случае если произойдет сбой основного источника питания, резервный продолжит работу. Если нельзя определить количество питания, которое питаемое устройство может использовать, можно определить его, указав мощность питания, которое основной и резервный источники питания могут передавать.

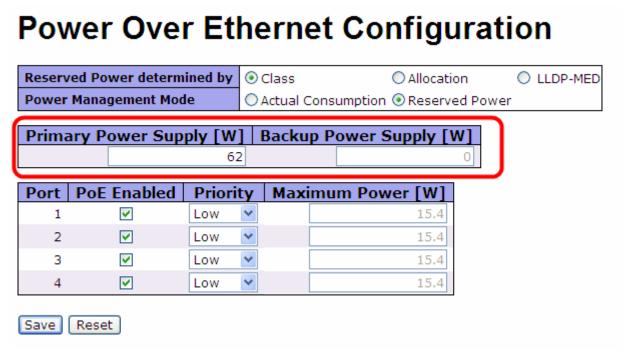


Рис. Настройка РоЕ – Основной и резервный источники питания

4.1.12.4 Настройка РоЕ – Настройка портов.

Настройки РоЕ на каждом порту

Power Over Ethernet Configuration

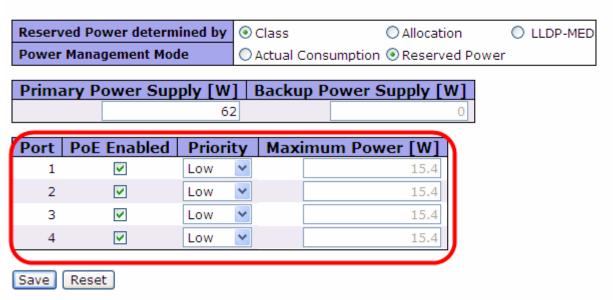


Рис. Настройка РоЕ – Настройка портов.

В таблице описаны основные поля:

Поле	Описание
PoE Enable	Определяет, включен ли РоЕ на порту
Priority	Приоритетность портов. Существует 3 уровня приоритетности: низкий, высокий и критический. Приоритетность используется, когда удаленные устройства запрашивают больше питания, чем источник питания может подавать. В этом случае порт с самым низкий приоритетом будет отключен.
Maximum Power	Числовое значение, определяющее максимальное количество питания в ваттах, которое может быть подано на клиентское устройство. (Максимально допустимое значение — 102.3 Ватта)
Save	Нажмите, чтобы сохранить настройки
Reset	Нажмите, чтобы сбросить последние изменения и вернуть предыдущие настройки

4.1.12.5 Состояние РоЕ

Просмотр текущего состояния РоЕ на всех портах.

Power Over Ethernet Status

Auto-refresh Refresh

Local Port	PD class	Power Reserved	Power Used	Current Used	Priority	Port Status
1	0	0 [W]	0 [W]	0 [mA]	Low	No PD detected
2	0	0 [W]	0 [W]	0 [mA]	Low	No PD detected
3	0	0 [W]	0 [W]	0 [mA]	Low	No PD detected
4	0	0 [W]	0 [W]	0 [mA]	Low	No PD detected
Total		0 [W]	0 [W]	0 [mA]		

Рис. Состояние РоЕ

В таблице описаны основные поля:

Поле	Описание
Local Port	Номер порта
Power Reserved	Питания, требуемое клиентскому устройству.
Power Used	Питание, которое использует клиентское устройство на данный момент
Current Used	Ток, который использует клиентское устройство на данный момент
Priority	Приоритет порта, указанный пользователем
Port Status	Статус порта

4.1.12.6 LLDP РоЕ соседи

Просмотр состояния всех LLDP PoE соседей. Таблица содержит информацию о состоянии всех LLDP PoE соседей. В строках таблицы указано на каких портах были обнаружены LLDP PoE соседей. В столбцах приведена следующая информация:

LLDP Neighbor Power Over Ethernet Information

Рис. LLDP РоЕ соседи

Поле	Описание
Local Port	Порт коммутатора, на который был получены LLDP данные

Power Type	Определяет устройство как PSE (источник PoE питания) или PD (клиент). Неизвестный тип определяется как "Reserved".
Power Source	Источник питания, используемый PSE или PD устройствами. Если тип устройства – PSE, оно может работать либо с помощью основного, либо резервного источника питания. Если источник питания не определен, значение - Unknown. Если тип устройства – PD, оно может работать либо с помощью локального источника питания, либо использовать PSE как источник. Оно также может использовать оба источника. Если источник питания не определен, значение - Unknown.
Power Used	Используемое питание показывает, сколько тока потребляет устройство через РоЕ порт
Power Priority	Приоритет питания РоЕ устройства (как PD, так и PSE). Существует 3 уровня приоритетности: критический, высокий и низкий. Если приоритет не определён, значение поля - "Unknown"
Maximum Power	Числовое значение, определяющее максимальное количество питания в ваттах, которое требуется PD от PSE устройства, или минимальное количество питания, которое PSE устройство может подавать через кабель максимальной длины в соответствии с его настройками. Максимально допустимое значение — 102.3 Ватта. Значение больше 102.3 Ватт отображается как "Reserved".
Refresh	Нажмите, чтобы обновить страницу
Auto- refresh	Поставьте галочку, чтобы включить автоматическое обновление страницы.

4.1.13. Перезагрузка системы

Перезагрузка системы. После восстановления устройство загрузится в обычном режиме.

Warm Reset Are you sure you want to perform a Warm Restart? Yes No

Рис. Перезагрузка системы

В таблице описаны основные поля:

Поле	Описание
Yes	Нажмите, чтобы перезагрузить устройство
No	Нажмите, чтобы вернуться к странице состояния порта без перезагрузки

4.1.14.Сброс настроек

Сброс настроек устройства. Сохраняется только ІР конфигурация.

Factory Defaults

Are you sure you want to reset the configuration to Factory Defaults?

Рис. Сброс настроек

Поле	Описание
Yes	Нажмите, чтобы сбросить настройки до заводских
No	Нажмите, чтобы вернуться к странице состояния порта без сброса настроек

5. Командная строка

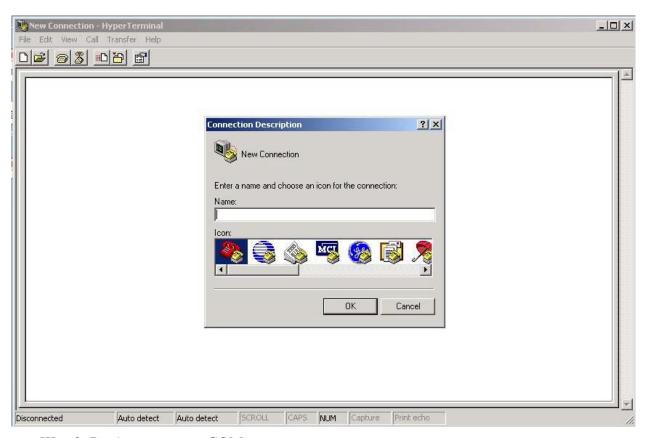
5.1. Управление с помощью командной строки

Кроме web-управления, SWMG-244GSFP(-E) также поддерживают управление с помощью командной строки. Вы можете использовать консоль или Telnet для управления коммутатором.

Управление с помощью командной строки через последовательный консольный RS-232 порт (115200, 8, none, 1, none)

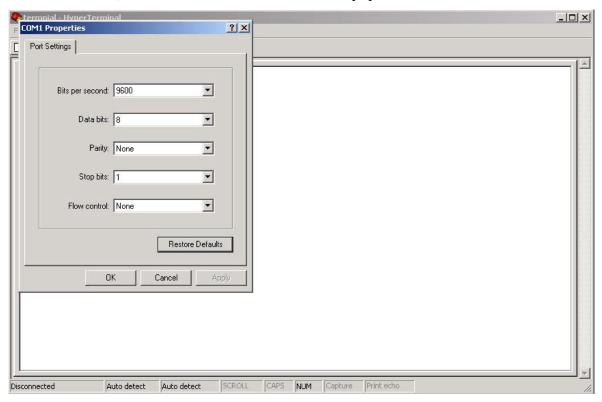
Для настройки с помощью последовательного консольного RS-232 порта используйте кабель RJ45 к DB9-F (DB-9 «мама»), чтобы подключить консольный RS-232 порт коммутатора с COM портом вашего компьютера.

Для того, чтобы получить доступ к консоли через последовательный RS-232 кабель:


Шаг 1. На рабочем столе Windows выберите Пуск > Программы > Стандартные > Связь > Нурег Terminal

Можно использовать любой другой эмулятор терминала, такой как Putty.

Шаг 2. Введите имя для нового соединения



Шаг 3. Выберите номер СОМ порта для его использования

Шаг 4. Настройка свойств СОМ порта. 9600 для бит в секунду, 8 для бит данных, None для четности, 1 для стоповых битов и none для управления потоком.

Шаг 5. Появится окно входа в систему. Введите имя пользователя и пароль (пароль такой же, как и для Web браузера), затем нажмите enter.

Command Line Interface

Username : _

Password:

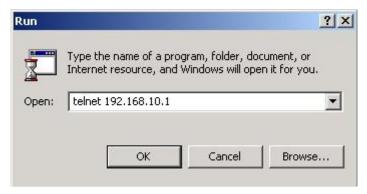
Управление через Telnet

Пользователи могут использовать Telnet для настройки коммутаторов.

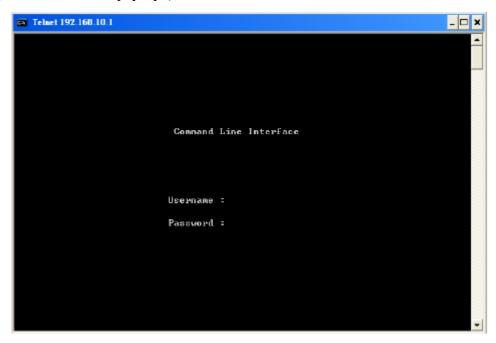
Значения по умолчанию:

• IP адрес: 192.168.10.1

• Subnet Mask: 255.255.255.0


• Default Gateway: 192.168.10.254

• User Name: admin


• Password: admin

Для того, чтобы получить доступ к консоли Telnet:

Шаг 1. Набрать telnet *IP адрес коммутатора* из командной строки windows (или любой аналог)

Шаг 2. Появится окно входа в систему. Введите имя пользователя и пароль (пароль такой же, как и для Web браузера), затем нажмите enter.

Группы команд

Command G	roups:
System	: System settings and reset options
Syslog	: Syslog Server Configuration
ΙP	: IP configuration and Ping
Auth	: Authentication
Port	: Port management
Aggr	: Link Aggregation
LACP	: Link Aggregation Control Protocol
STP	: Spanning Tree Protocol
Dot1x	: IEEE 802.1X port authentication
I GMP	: Internet Group Management Protocol snooping
LLDP	: Link Layer Discovery Protocol
MAC	: MAC address table
VLAN	: Virtual LAN
PULAN	: Private ULAN
QoS	: Quality of Service
ACL	: Access Control List
Mirror	: Port mirroring
Config	: Load/Save of configuration via TFTP
SNMP	: Simple Network Management Protocol
Firmware	: Download of firmware via TFTP
Fault	: Fault Alarm Configuration

System

	Configuration [all] [<port_list>]</port_list>
	Reboot
	Restore Default [keep_ip]
	Contact [<contact>]</contact>
	Name [<name>]</name>
System>	Location [<location>]</location>
	Description [<description>]</description>
	Password <password></password>
	Username [<username>]</username>
	Timezone [<offset>]</offset>
	Log [<log_id>] [all info warning error] [clear]</log_id>

Syslog

Syslog> ServerConfiguration [<ip_addr>]</ip_addr>
--

IP

	Configuration
	DHCP [enable disable]
IP>	Setup [<ip_addr>] [<ip_mask>] [<ip_router>] [<vid>]</vid></ip_router></ip_mask></ip_addr>
	Ping <ip_addr_string> [<ping_length>]</ping_length></ip_addr_string>
	SNTP [<ip_addr_string>]</ip_addr_string>

Auth

	Configuration
	Timeout [<timeout>]</timeout>
	Deadtime [<dead_time>]</dead_time>
	RADIUS [<server_index>] [enable disable] [<ip_addr_string>]</ip_addr_string></server_index>
Auth>	[<secret>] [<server_port>]</server_port></secret>
	ACCT_RADIUS [<server_index>] [enable disable] [<ip_addr_string>] [<secret>] [<server_port>]</server_port></secret></ip_addr_string></server_index>
	Client [console telnet ssh web] [none local radius] [enable disable]
	Statistics [<server_index>]</server_index>

Port

	Configuration [<port_list>]</port_list>
	State [<port_list>] [enable disable]</port_list>
Port>	Mode [<port_list>] [10hdx 10fdx 100hdx 100fdx 1000fdx auto]</port_list>
	Flow Control [<port_list>] [enable disable]</port_list>
	MaxFrame [<port_list>] [<max_frame>]</max_frame></port_list>

Power [<port_list>] [enable disable actiphy dynamic]</port_list>
Excessive [<port_list>] [discard restart]</port_list>
Statistics [<port_list>] [<command/>]</port_list>
VeriPHY [<port_list>]</port_list>

Aggr

	Configuration
	Add <port_list> [<aggr_id>]</aggr_id></port_list>
Aggr>	Delete <aggr_id></aggr_id>
	Lookup [<aggr_id>]</aggr_id>
	Mode [smac dmac ip port] [enable disable]

LACP

	Configuration [<port_list>]</port_list>
	Mode [<port_list>] [enable disable]</port_list>
LACP>	Key [<port_list>] [<key>]</key></port_list>
LACP>	Role [<port_list>] [active passive]</port_list>
Status [<port_list>]</port_list>	Status [<port_list>]</port_list>
	Statistics [<port_list>] [clear]</port_list>

STP

	Configuration
	Version [<stp_version>]</stp_version>
STP>	Non-certified release, v
	Txhold [<holdcount>]lt 15:15:15, Dec 6 2007</holdcount>
	MaxAge [<max_age>]</max_age>

FwdDelay [<delay>]</delay>
bpduFilter [enable disable]
bpduGuard [enable disable]
recovery [<timeout>]</timeout>
CName [<config-name>] [<integer>]</integer></config-name>
Status [<msti>] [<port_list>]</port_list></msti>
Msti Priority [<msti>] [<priority>]</priority></msti>
Msti Map [<msti>] [clear]</msti>
Msti Add <msti> <vid></vid></msti>
Port Configuration [<port_list>]</port_list>
Port Mode [<port_list>] [enable disable]</port_list>
Port Edge [<port_list>] [enable disable]</port_list>
Port AutoEdge [<port_list>] [enable disable]</port_list>
Port P2P [<port_list>] [enable disable auto]</port_list>
Port RestrictedRole [<port_list>] [enable disable]</port_list>
Port RestrictedTcn [<port_list>] [enable disable]</port_list>
Port bpduGuard [<port_list>] [enable disable]</port_list>
Port Statistics [<port_list>]</port_list>
Port Mcheck [<port_list>]</port_list>
Msti Port Configuration [<msti>] [<port_list>]</port_list></msti>
Msti Port Cost [<msti>] [<port_list>] [<path_cost>]</path_cost></port_list></msti>
Msti Port Priority [<msti>] [<port_list>] [<priority>]</priority></port_list></msti>
<u> </u>

Dot1x

	Dot1x>	Configuration [<port_list>]</port_list>
--	--------	--

Mode [enable disable]
State [<port_list>] [macbased auto authorized unauthorized]</port_list>
Authenticate [<port_list>] [now]</port_list>
Reauthentication [enable disable]
Period [<reauth_period>]</reauth_period>
Timeout [<eapol_timeout>]</eapol_timeout>
Statistics [<port_list>] [clear eapol radius]</port_list>
Clients [<port_list>] [all <client_cnt>]</client_cnt></port_list>
Agetime [<age_time>]</age_time>
Holdtime [<hold_time>]</hold_time>

IGMP

	Configuration [<port_list>]</port_list>
	Mode [enable disable]
	State [<vid>] [enable disable]</vid>
	Querier [<vid>] [enable disable]</vid>
IGMP>	Fastleave [<port_list>] [enable disable]</port_list>
	Router [<port_list>] [enable disable]</port_list>
	Flooding [enable disable]
	Groups [<vid>]</vid>
	Status [<vid>]</vid>

LLDP

	LLDP>	Configuration [<port_list>]</port_list>
		Mode [<port_list>] [enable disable rx tx]</port_list>

Optional_TLV [<port_list>][port_descr sys_name sys_descr sys_capa mgmt_addr] [enable disable]</port_list>
Interval [<interval>]</interval>
Hold [<hold>]</hold>
Delay [<delay>]</delay>
Reinit [<reinit>]</reinit>
Info [<port_list>]</port_list>
Statistics [<port_list>] [clear]</port_list>

MAC

	Configuration [<port_list>]</port_list>
	Add <mac_addr> <port_list> [<vid>]</vid></port_list></mac_addr>
	Delete <mac_addr> [<vid>]</vid></mac_addr>
	Lookup <mac_addr> [<vid>]</vid></mac_addr>
MAC>	Agetime [<age_time>]</age_time>
	Learning [<port_list>] [auto disable secure]</port_list>
	Dump [<mac_max>] [<mac_addr>] [<vid>]</vid></mac_addr></mac_max>
	Statistics [<port_list>]</port_list>
	Flush

VLAN

V/L ANT	Configuration [<port_list>]</port_list>
	Aware [<port_list>] [enable disable]</port_list>
VLAN>	PVID [<port_list>] [<vid> none]</vid></port_list>
	FrameType [<port_list>] [all tagged]</port_list>

	Add <vid>[<port_list>]</port_list></vid>
	Delete <vid></vid>
	Lookup [<vid>]</vid>

PVLAN

	Configuration [<port_list>]</port_list>
	Add <pvlan_id> [<port_list>]</port_list></pvlan_id>
PVLAN>	Delete <pvlan_id></pvlan_id>
	Lookup [<pvlan_id>]</pvlan_id>
	Isolate [<port_list>] [enable disable]</port_list>

QOS

	Configuration [<port_list>]</port_list>
	Classes [<class>]</class>
	Default [<port_list>] [<class>]</class></port_list>
	Tagprio [<port_list>] [<tag_prio>]</tag_prio></port_list>
	QCL Port [<port_list>] [<qcl_id>]</qcl_id></port_list>
	QCL Add [<qcl_id>] [<qce_id_next>]</qce_id_next></qcl_id>
QoS>	(etype <etype>) </etype>
Q 021	(vid <vid>) </vid>
	(port <udp_tcp_port>) </udp_tcp_port>
	(dscp <dscp>) </dscp>
	(tos <tos_list>) </tos_list>
	(tag_prio <tag_prio_list>)</tag_prio_list>
	<class></class>
	QCL Delete <qcl_id> <qce_id></qce_id></qcl_id>
	QCL Lookup [<qcl_id>] [<qce_id>]</qce_id></qcl_id>

Mode [<port_list>] [strict weighted]</port_list>
Weight [<port_list>] [<class>] [<weight>]</weight></class></port_list>
Rate Limiter [<port_list>] [enable disable] [<bit_rate>]</bit_rate></port_list>
Shaper [<port_list>] [enable disable] [<bit_rate>]</bit_rate></port_list>
Storm Unicast [enable disable] [<packet_rate>]</packet_rate>
Storm Multicast [enable disable] [<packet_rate>]</packet_rate>
Storm Broadcast [enable disable] [<packet_rate>]</packet_rate>

ACL

	Configuration [<port_list>]</port_list>
	Action [<port_list>] [permit deny] [<rate_limiter>] [<port_copy>] [<logging>] [<shutdown>] Policy [<port_list>] [<policy>]</policy></port_list></shutdown></logging></port_copy></rate_limiter></port_list>
	Rate [<rate_limiter_list>] [<packet_rate>]</packet_rate></rate_limiter_list>
	Add [<ace_id>] [<ace_id_next>] [switch (port <port>) (policy <policy>)]</policy></port></ace_id_next></ace_id>
	[<vid>] [<tag_prio>] [<dmac_type>] [(etype [<etype>] [<smac>] </smac></etype></dmac_type></tag_prio></vid>
ACL>	(arp [<sip>] [<dip>] [<smac>] [<arp_opcode>] [<arp_flags>]) </arp_flags></arp_opcode></smac></dip></sip>
	(ip [<sip>] [<dip>] [<pre> cip_flags>]) </pre></dip></sip>
	(icmp [<sip>] [<dip>] [<icmp_type>] [<icmp_code>] [<ip_flags>]) (udp [<sip>] [<dip>] [<sport>] [<dport>] [<ip_flags>]) </ip_flags></dport></sport></dip></sip></ip_flags></icmp_code></icmp_type></dip></sip>
	(tcp [<sip>] [<dip>] [<sport>] [<ip_flags>] [<tcp_flags>])]</tcp_flags></ip_flags></sport></dip></sip>
	[permit deny] [<rate_limiter>] [<port_copy>] [<logging>] [<shutdown>]</shutdown></logging></port_copy></rate_limiter>
	Delete <ace_id></ace_id>
	Lookup [<ace_id>]</ace_id>
	Clear

Mirror

	Configuration [<port_list>]</port_list>
	Port [<port> disable]</port>
	Mode [<port_list>] [enable disable rx tx]</port_list>

Config

	Config>	Save <ip_server> <file_name></file_name></ip_server>
		Load <ip_server> <file_name> [check]</file_name></ip_server>

SNMP

SINIII	
	Trap Inform Retry Times [<retries>]</retries>
	Trap Probe Security Engine ID [enable disable]
	Trap Security Engine ID [<engineid>]</engineid>
	Trap Security Name [<security_name>]</security_name>
	Engine ID [<engineid>]</engineid>
	Community Add <community> [<ip_addr>] [<ip_mask>]</ip_mask></ip_addr></community>
	Community Delete <index></index>
CNDAD	Community Lookup [<index>]</index>
SNMP>	User Add <engineid> <user_name> [MD5 SHA] [<auth_password>] [DES]</auth_password></user_name></engineid>
	[<priv_password>]</priv_password>
	User Delete <index></index>
	User Changekey <engineid> <user_name> <auth_password></auth_password></user_name></engineid>
	[<priv_password>]</priv_password>
	User Lookup [<index>]</index>
	Group Add <security_model> <security_name> <group_name></group_name></security_name></security_model>
	Group Delete <index></index>

Group Lookup [<index>]</index>
View Add <view_name> [included excluded] <oid_subtree></oid_subtree></view_name>
View Delete <index></index>
View Lookup [<index>]</index>
Access Add <group_name> <security_model> <security_level> [<read_view_name>] [<write_view_name>]</write_view_name></read_view_name></security_level></security_model></group_name>
Access Delete <index></index>
Access Lookup [<index>]</index>

Firmware

Firmware>

Fault

Fault>	Alarm PortLinkDown [<port_list>] [enable disable]</port_list>
	Alarm PowerFailure [pwr1 pwr2 pwr3] [enable disable]

SFLOW

SFLOW>	mode [enable disable]
	version [v2 v5]
	rate [<integer>]</integer>
	interval [<integer>]</integer>
	coladdr [<ip_addr>]</ip_addr>
	colport [<integer>]</integer>
	show

6. Технические спецификации

Модель коммутатора	SWMG-244GSFP	SWMG-244GSFP-E
Физические порты		
Гигабитные 10/100/1000 Base-T(X) и 100/1000Base-X SFP сотво порты		24
100/1000Base-X SFP порты	4	
Технология		
Стандарты Ethernet	802.3 10Base-T 802.3u 100Base-TX, 100BaseF 802.3z 1000Base-X 802.3ab 1000BaseTX 802.3x Flow Control 802.3ad LACP 802.1D STP 802.1p COS 802.1Q VLAN Tagging 802.1w RSTP 802.1s MSTP 802.1x Authentification 802.1AB LLDP	X
МАС адреса	8000	
Приоритетные очереди	4	
Передача данных	Store-and-Forward	
Свойства коммутатора	Латентность: 7 мкс Пропускная способность: 56 Гбит/с Максимальное количество доступных VLAN: 256 Многоадресные группы IGMP: 128 для каждой VLAN Ограничение скорости на порту: Определяется пользователем	
Jumbo кадр	До 9000 байт	
Функции безопасности	Функция защиты IP Включение или отключение портов, МАС фильтрация Контроль доступа к сети по портам (802.1x)	

	сетевого трафика	ния безопасности и ограничения не паролями с помощью Radius ия SNMPv3 для безопасного
Функции ПО	STP/RSTP/MSTP (IEEE 802.1D/w/s) Кольцевая топология резервирования (Sy-Ring) с временем восстановления менее чем 10 мс на 250 устройств Поддержка TOS/Diffserv Quality of Service (802.1p) для трафика в режиме реального времени VLAN (802.1Q) с тегированием VLAN и поддержкой GVRP Опция IGMP Snooping Управление пропускной способностью на основе IP Управление QoS в зависимости от приложения Автоматическое предотвращение DOS/DDOS Настройка портов, состояние, статистика, мониторинг, безопасность Поддержка DHCP сервера или клиента	
Сетевое резервирование	Sy-Ring STP RSTP MSTP	
Последовательный консольный RS-232 порт	RS232 на коннекторе DB9 с консольным кабелем. Скорость передачи данных: 115200 бит/с, 8, N, 1	
Контакт сбоя		
Реле	Не определен	Реле, несущее ток 1A / 24 В постоянного тока
Питание		
Входная мощность	100~240В переменного тока	100~240В переменного тока через разъём питания, два питания: 36~72В постоянного тока через 6-контактную клеммную колодку
Защита от перегрузки	Поддерживается	
Потребляемая мощность	36 Ватт	36 Ватт

Физические характеристики				
Корпус	19-дюймовый корпус, монтируемый в стойку			
Габариты	431 мм (ширина) х 342 мм (толщина) х 44 мм (высота)			
Параметры окружающей среды				
Температура хранения	-40 до 85 °C (-40 до 185 °F)			
Рабочая температура	-40 до 70 °C (14 до 158 °F)			
Допустимая рабочая влажность	от 5% до 95%, без конденсата			
Соответствие стандартам				
EMI	FCC часть 15, CISPR (EN5502) class A			
EMS	EN61000-4-2 (ESD), EN61000-4-3 (RS), EN61000-4-4 (EFT), EN61000-4-5 (Surge), EN61000-4-6 (CS), EN61000-4-8, EN61000-4-11			
Ударопрочность	IEC60068-2-27			
Свободное падение	IEC60068-2-32			
Вибрация	IEC60068-2-6			
Гарантийный срок	5 лет			